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Executive Summary

Climate change is one of the most pressing challenges of the 21st century, requiring rapid and 
coordinated action across communities, sectors, approaches, and technologies to mitigate 
greenhouse gas (GHG) emissions and enhance adaptation to climate impacts. It disproportionately 
affects developing countries, including Least Developed Countries (LDCs) and Small Island 
Developing States (SIDS), which are highly vulnerable to signiĔcant consequences of climate 
change, including rising sea levels, extreme weather events, and shifting agricultural conditions. 
These threats jeopardize socio-economic stability and environmental sustainability in these regions, 
making climate adaptation and mitigation strategies essential. 

This technical paper, prepared by the Technology Executive Committee (TEC) under the Technology 
Mechanism Initiative on AI for Climate Action (#AI4ClimateAction Initiative), offers a comprehensive 
overview for policymakers, practitioners, and researchers navigating opportunities, challenges, and 
risks of the use of AI for climate action in developing countries, with a focus on LDCs and SIDS 
as these countries face unique vulnerabilities to climate change. AI-driven solutions can become 
potential enablers for adapting to climate impacts and reducing GHG emissions. However, risks 
and challenges also exist, which need to be addressed for the effective and sustainable use of AI in 
climate action.

In mitigation AI can enable the reduction of energy waste and the optimization of energy 
consumption and distribution; scale the identiĔcation of emission hotspots and optimize industrial 
processes while tracking their carbon footprint. AI-driven renewable energy management systems 
can enhance energy grid efĔciency, forecast power demand, and optimize solar and wind energy 
deployment. AI tools can be also used to analyse data from transportation systems to reduce fuel 
consumption through trafĔc optimization and route planning. The integration of AI into emission 
reduction strategies can accelerate progress towards decarbonization and help nations meet their 
climate commitments.

In the context of adaptation, AI can enhance early warning systems by predicting extreme weather 
events such as hurricanes, ĕoods, and droughts, enabling proactive disaster risk management. AI-
driven urban resilience tools can be used to support infrastructure planning by identifying vulnerabilities 
and optimizing land use. Additionally, AI-assisted resource and ecosystem management solutions 
can help improve biodiversity conservation, sustainable water use, and land restoration efforts when 
coupled with satellite imagery.
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Despite its potential, AI adoption in developing countries presents numerous challenges. Many 
developing countries, and in particular LDCs and SIDS, face digital infrastructure limitations, including 
unreliable internet connectivity, inadequate computing power, and a lack of skilled professionals to 
develop and deploy AI systems. The digital divide hinders their ability to adopt AI-driven climate 
solutions and addressing this divide requires signiĔcant investment in digital transformation and 
capacity-building programmes. Furthermore, the availability and accessibility of high-quality climate 
data remain signiĔcant barriers as many developing countries lack comprehensive and reliable 
datasets for AI-driven decision-making. Without robust data-sharing frameworks and cybersecurity 
measures, AI applications outputs may be unreliable or prone to exploitation. Moreover, bias and 
inequity in AI systems can perpetuate social disparities if algorithms are not designed with inclusivity 
in mind. Therefore, a proper governance framework is needed to mitigate these potential risks and 
digital divide. Also, increased energy and water consumption and carbon footprints can have negative 
consequences and pose threats to global climate goals. The resource intensity of AI, including its 
energy and water consumption, raises concerns about sustainability, particularly in regions with 
limited natural resources, and these have to be taken into account when considering AI as an enabler 
for climate action.

To ensure AI serves as an enabler of climate resilience in developing countries, in particular LDCs and 
SIDS, policymakers and stakeholders must prioritize capacity-building initiatives, strengthen digital 
infrastructure, and establish inclusive governance frameworks. By fostering collaborations, including 
between governments, academia, and the private sector, developing countries can build AI expertise 
and ensure responsible AI deployment. Creating regional AI research centres and knowledge-sharing 
platforms can further enhance local capacity and facilitate AI adoption tailored to the speciĔc needs 
of each country.

This technical paper concludes with a set of recommended priority actions, to be used to realize the 
potential of AI in climate action: (a) addressing the digital divide should focus on expanding digital 
infrastructure and investing in AI capacity-building programmes to empower developing countries 
to leverage AI effectively for climate action; (b) enhancing data availability and access requires 
stronger climate data collection efforts and the promotion of open-data initiatives to support AI 
model development and deployment; (c) strengthening AI governance under the UNFCCC involves 
creating regulatory frameworks to ensure AI transparency, fairness, and accountability, preventing 
bias and misuse while fostering ethical AI adoption; (d) addressing gender bias and social inequalities 
by designing AI models with inclusive approaches to prevent discrimination and ensure equitable 
climate beneĔts is important; (e) managing the energy and water consumption of AI, among others, 
should be taken into account, encouraging the development of energy-efĔcient AI systems and 
promoting sustainability in AI operations; (f) enhancing global collaboration for AI in climate action 
is necessary, strengthening cooperation between governments, UN agencies, private-sector actors 
and other stakeholders to facilitate responsible AI adoption and address existing regulatory gaps.

Implementing these recommendations will allow developing countries, especially LDCs and SIDS, to 
harness AI as a strategic tool to implement climate action at scale. Addressing lack of infrastructure, 
sustainability concerns, data, and governance gaps, will not only strengthen local capacities but also 
create opportunities for innovation and collaboration, ensuring these countries actively participate 
in global climate efforts while addressing their unique climate challenges.
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1. Introduction

Countries are increasingly recognizing the potential of AI as an enabler to aid climate action and 
as a tool to achieve their climate change targets. An analysis of the 169 Nationally Determined 
Contributions (NDCs) showed that by February 2024, 57 developing countries mentioned applying 
digital technologies to support their NDCs, including Ĕve of them that directly referred to AI. AI-
enabled systems show the potential to support both climate change mitigation and adaptation, 
ranging from forecasting natural disasters to optimizing food production to enhancing energy 
system efĔciency (UNFCCC, 2024c).

This technical paper positions itself as a document to provide comprehensive information on AI for 
climate action, by exploring its opportunities, challenges, and risks with a particular focus on the 
vulnerability of LDCs and SIDS. An extensive literature review and collection of case studies have 
been used to provide holistic and balanced information on this issue.

1.1. Aim and Objectives of the Technical Paper 

The accurate prediction and monitoring of sea level rise are important for the protection of coastal 
areas and the planning of risk mitigation strategies. Various AI-based methods have been developed 
to address this complex issue, signiĔcantly enhancing the accuracy and efĔciency of sea level 
predictions. Techniques like hybridization, ensemble modeling, data decomposition, and algorithm 
optimization are identiĔed as key strategies for enhancing sea level predictions. DL, in particular, has 
shown superior performance due to its ability to automatically extract features and store memory, 
making it more effective than traditional ML models. This technical paper aims to outline the major 
roles, opportunities, and challenges of AI in climate action. The following objectives serve as a guide 
to addressing the complex interplay between AI technologies and climate change mitigation and 
adaptation, particularly in the context of developing countries, LDCs, and SIDS:

•	 Explore AI’s role as a technological tool to advance and scale up transformative climate 
solutions for mitigation and adaptation in developing countries, with a focus on LDCs and SIDS.

•	 Address the challenges and risks posed by AI, particularly those relevant to climate action, 
including concerns about energy consumption and its environmental impact, data security, 
gender bias, the digital divide, and harmful practices.
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•	 Showcase the opportunities and challenges associated with existing AI applications in 
developing countries, particularly LDCs and SIDS, in addressing climate change and improving 
environmental outcomes.

•	 Provide recommendations to policymakers on leveraging AI as a technological tool to advance 
and scale up transformative climate solutions while overcoming identiĔed risks and challenges.

1.2. DeĔning ArtiĔcial Intelligence

ArtiĔcial Intelligence is the discipline focused on the research and development of mechanisms 
and applications of AI systems. AI systems are engineered systems that generate outputs such as 
content, forecasts, recommendations, or decisions for a given set of human-deĔned objectives 
(ISO/IEC 22989:2022(E)) by leveraging sophisticated algorithms, computational resources, and 
reliable and comprehensive datasets. The escalating availability of data, coupled with advancements 
in computational power, machine learning algorithms, and cloud computing, are some of the key 
drivers behind the renewed interest in AI over recent years. In order to work efĔciently and in real 
time, AI applications rely on an optimal internet connection, without which data transmission would 
be impaired. 

The AI stack can be described with a Ĕve-layer structure:

•	 Hardware: The complete CPU/GPU design and production chain, from raw materials and rare 
earth elements to advanced microelectronics manufacturing.

•	 Cloud Infrastructure: Data centres providing computing power, data storage, and platforms, 
encompassing energy supply, cooling, security, and redundancy.

•	 Internet Infrastructures: Physical networks (cables, towers, servers, exchange points) and 
end-user devices enabling internet connectivity and data transfer.

•	 Software & Libraries: AI frameworks and development tools.

•	 Applications and Services: AI-based solutions in areas such as computer vision, language 
processing, robotics, Ĕnance, agriculture, manufacturing, energy, media, healthcare, 
transportation, and education.

Machine Learning (ML) is the process of optimizing model parameters through computational 
techniques, such that the model’s behaviour reĕects the data or experience. ML algorithms can be 
applied in various use cases and domains thanks to their capacity for pattern recognition. However, 
effective application depends on the size, quality, and representativeness of the available data, as 
well as the appropriateness of the ML algorithm selected for the problem, which often requires 
testing multiple models to achieve the best predictions. A training-validation split is typically 
used when the dataset is sufĔciently large and robust. In this approach, the training set helps the 
algorithm learn patterns from features and labels, whereas the test or validation set measures 
accuracy and generalization. After testing, model parameters are adjusted to address errors and 
enhance performance.
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1.3. The SpeciĔcity of Least Developed Countries and Small 
Island Developing States in the Climate Change Context

While climate change poses challenges globally, its impacts are disproportionately severe for Least 
Developed Countries (LDCs) and Small Island Developing States (SIDS). SIDS and LDCs, due to their 
high exposure and fragility, are among the most vulnerable to climate change and the least emitting. 
Notably, SIDS and LDCs contribute minimally to, or bear almost no responsibility for, climate change, 
yet their speciĔc geographical and socio-economic conditions make them exceptionally susceptible 
to its adverse effects (Mohan, 2023). Although the Paris Agreement endorses that developed 
countries should lead in providing assistance and establishing a framework for Ĕnance, substantial 
funding is still necessary for SIDS and LDCs to meet their climate objectives (Mohan, 2023).

LDCs and SIDS face heightened vulnerability to the adverse effects of climate change due to 
their limited capacity or resources to implement adaptive and mitigation measures. They are 
particularly exposed to climate risks such as rising sea levels, increased frequency and intensity 
of extreme weather events, and changing precipitation patterns, as well as shifts in agricultural 
conditions. These shifts, driven by changing temperatures, rainfall, and growing seasons, threaten 
food security and necessitate agricultural adaptation strategies like crop diversiĔcation and efĔcient 
water management. Moreover, these countries face signiĔcant challenges in reducing emissions or 
transitioning to low-carbon economies due to a reliance on inexpensive fossil fuels, limited renewable 
energy infrastructure, and the degradation of critical blue carbon ecosystems, such as mangroves 
and seagrasses, which play a key role in carbon sequestration. Addressing these challenges requires 
adaptation and mitigation strategies tailored to their unique contexts and needs (Havukainen et al., 
2022; Filho, W. L. et al., 2020; Leal Filho et al., 2021; Tokunaga et al., 2021). 

1.4. ArtiĔcial Intelligence as a Driver of Adaptation and 
Mitigation in Vulnerable Regions

In SIDS and LDCs, AI-driven technologies are being leveraged to improve early warning systems for 
natural disasters (Albahri et al., 2024; Kuglitsch et al., 2022a), providing more timely and accurate 
alerts to vulnerable populations. Beyond disaster preparedness, AI tools are being leveraged in LDCs 
to optimize agricultural practices, enabling regions to better adapt to shifting climate conditions by 
improving crop resilience and water resource management (Chen et al., 2023; Jain et al., 2023; Leal 
Filho et al., 2022) and strengthen climate communication channels in coastal regions facing extreme 
weather events (Chakravarty, 2023a). Furthermore, there are several examples of AI systems 
used to assist in the reduction of GHG emissions, advancing renewable energies, and improving 
environmental modelling and climate predictions (Bibri, 2024; Kaack et al., 2022; Sandalow et al., 
2023; Zhao et al., 2024).



4

1.5. Risks and Challenges of AI in Climate Action

Integrating AI into climate action is challenging both in developed and developing countries. 
Concerns span its potential environmental, ethical, and societal impacts, including its high energy 
and water consumption (Brevini 2020; IEA, 2024a; Ligozat et al., 2021; Luccioni, 2023; Raman et 
al., 2024; Yokoyama et al., 2023), data quality, security and privacy risks (Ansari et al., 2022; Habbal 
et al., 2024; Jada and Mayayise, 2024; Paracha et al., 2024; Wazid et al., 2022), biases, including 
gender bias (Lima et al., 2023; Nadeem et al., 2020, 2022; Patón-Romero et al., 2022), spread of 
misinformation (Galaz et al., 2023b; Chu-Ke and Dong, 2024; Rojas et al., 2024; Treen et al., 2020), 
and the digital divide (Bentley et al., 2024; Celik, 2023; Lutz, 2019;). While AI systems have signiĔcant 
potential to address climate challenges, these risks highlight the need for careful governance, ethical 
frameworks, and sustainable practices to ensure that the beneĔts of AI are fully realized without 
exacerbating existing inequalities or causing unintended harm.

Environmental costs are growing as AI models – especially Deep Learning (DL) and Generative AI 
(GenAI) – are highly resource- and energy-intensive, requiring substantial computational power and 
large-scale data processing. This energy consumption must be carefully evaluated since it can offset 
the potential climate beneĔts these technologies offer if not effectively managed (Dolby, 2023; 
Kumar and Davenport, 2023; Saenko, 2023).

Security concerns are also a challenge in deploying AI, especially in critical areas like climate action 
and environmental monitoring. Being software, each AI system is vulnerable to cyber attacks, data 
breaches, and malicious manipulation of algorithms, which can compromise data integrity and 
decision-making (Ansari et al., 2022; Wazid et al., 2022). The integration of AI and ML introduces 
new security vulnerabilities, necessitating robust security measures and protocols to safeguard 
data integrity and privacy, including encryption, regular audits, and the use of secure infrastructure 
(Goldblum et al., 2022; Paracha et al., 2024; Rosenberg et al., 2021), ensuring AI applications remain 
trustworthy and effective in their intended use.

Without adequate data, the potential for ML applications remains constrained, particularly in 
addressing climate change. Data scarcity, especially in developing countries, reĕects a broader issue 
of unequal access to key resources like AI, a challenge inadequately explored in current literature 
(Walsh et al., 2020). For instance, essential digital data – such as localized climate projections and 
weather forecasts, which are critical for optimizing farming practices – remains sparse in many regions 
(Balogun et al., 2020). Tackling data availability and access is essential for successfully implementing 
AI and ML-driven solutions to mitigate climate impacts.

AI can exacerbate inequalities without careful design, mainly through biases in algorithm 
development, data collection, and geographic coverage (McGovern et al., 2022a). Gender and 
demographic biases, inadequate infrastructure, and limited digital literacy hinder AI adoption 
in LDCs and SIDS (Ozor et al., 2023; UNFCCC, 2023) and may result in false assumptions and 
inequitable climate responses if unaddressed. Bridging these gaps requires investment in 
capacity-building, improved data collection, and infrastructure. Because ML models rely heavily 
on large, reliable datasets – often sparse in developing countries – combining rule-based, physics-
informed, and domain-informed ML approaches can alleviate data constraints. Additionally, 
misinformation about climate change can spread faster than fact-checkers can respond (Rojas et 
al., 2024), undermining trust in policies and delaying action. These disparities and risks need to be 
addressed for equitable AI-driven climate solutions.
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1.6. ArtiĔcial Intelligence and International Climate 
Frameworks and Resolutions

AI is increasingly being recognized in global climate governance as a tool to enhance climate action, 
improve decision-making, and strengthen transparency and accountability. While AI is not explicitly 
mentioned in the Paris Agreement or the 2030 Agenda for Sustainable Development, its applications 
directly support the achievement of climate and sustainability goals, including through Nationally 
Determined Contributions (NDCs), climate Ĕnance mechanisms, and capacity-building initiatives.

In March 2024, the United Nations General Assembly (UNGA) adopted a landmark resolution on 
AI, emphasizing the need for safe, secure, and trustworthy AI systems (United Nations, 2024a). 
Backed by over 120 Member States, the resolution underscores AI’s potential to accelerate 
progress on the Sustainable Development Goals (SDGs) while ensuring human rights protections 
across the AI life cycle. It also calls for global cooperation to bridge the digital divide, enhance 
digital literacy, and support equitable access to AI technologies, particularly in developing 
countries. This resolution establishes a foundational international framework for integrating AI 
into climate action, particularly by reinforcing ethical and responsible AI deployment for climate 
monitoring, adaptation, and mitigation.

Beyond this resolution, global efforts are underway to regulate and standardize AI applications, 
ensuring they align with climate objectives. Discussions on AI governance and sustainability are 
emerging within international climate institutions. These focus on AI’s role in monitoring emissions, 
optimizing renewable energy systems, supporting early warning systems, and improving carbon 
market integrity. 

In November 2023 at COP28, Parties noted the Technology Mechanism Initiative on AI for Climate 
Action and requested the Technology Executive Committee (TEC) and the Climate Technology 
Centre and Network (CTCN) to implement the initiative and enhance awareness of AI and its 
potential role and impact. 

Altogether, these initiatives signal a growing international consensus on the need for AI to 
complement efforts in addressing climate goals. 

1.7. Structure of the Technical Paper

This paper is structured as follows: Section 2 introduces and describes the key concepts underlying 
AI and its applications in climate action. Section 3 outlines the methodology employed in this 
paper. Section 4 delves into AI for climate action in developing countries, presenting case studies 
and best practices, and providing detailed insights into their impacts and the lessons learned, 
which can beneĔt other developing countries. Section 5 explores the role of AI in implementing 
the Technology Mechanism Joint Work Programme and TNA outcomes. Section 6 discusses the 
risks and challenges associated with AI deployment for climate action in developing countries. 
Section 7 presents policy options for leveraging AI as a tool for advancing and scaling transformative 
climate solutions in developing countries while addressing the identiĔed challenges and promoting 
sustainable development. Section 8 provides conclusions and recommendations, summarizing 
the key Ĕndings of the paper and offering actionable steps for policymakers, as well as researchers 
and practitioners. Section 9 is a call to action for these stakeholders to collaborate and harness AI 
technologies in driving climate action and sustainable development. 
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2. Conceptual DeĔnitions and  
Discussions: ArtiĔcial Intelligence  
for Climate Action

This section provides an overview of AI, its subsets, models, methods, paradigms, and applications 
in the context of climate actions. Understanding these AI concepts is crucial for designing 
informed policy frameworks and governance mechanisms for responsible and effective AI-driven  
climate action. 

AI is the discipline focused on the research and development of mechanisms and applications 
of AI systems. AI systems are engineered systems that generate outputs such as content, 
forecasts, recommendations, or decisions for a given set of human-deĔned objectives (ISO/IEC 
22989:2022(E)). AI systems can be used for different purposes and be engineered in a way that 
makes them capable of updating the parameters in the model from the new data they are exposed 
to over successive updates or iterations (Sharifani and Amini, 2023; Shinde and Shah, 2018; Verma 
et al., 2024).

ML models can be effectively utilized across various paradigms, including supervised learning, 
unsupervised learning (including GenAI) and reinforcement learning (Donti and Kolter, 2021; Naeem 
et al., 2023). In supervised learning, models are trained on labelled data, making them ideal for tasks 
such as classiĔcation and regression, where speciĔc outcomes are known in advance. Unsupervised 
learning, on the other hand, does not rely on labelled data and is used to identify patterns and 
structures within datasets, such as clustering or anomaly detection. Reinforcement learning involves 
training models through trial and error, where an agent learns to make decisions by receiving 
feedback from the environment, making it particularly useful for applications requiring sequential 
decision-making, such as robotics or game-playing. Each of these paradigms provides unique 
capabilities and approaches to solving complex problems, enabling the development of versatile 
and powerful ML applications. Here, it sufĔces to point out that supervised learning is particularly 
effective for climate-impact forecasting, whereas unsupervised methods excel in identifying novel 
climate patterns, and reinforcement learning optimizes resource allocation and decision-making 
under climate uncertainty.

Deep Learning (DL) is a subset of Machine Learning (ML) that utilizes ArtiĔcial Neural Networks 
(ANNs). While inspired by simpliĔed models of biological neurons, ANNs function in a fundamentally 
different way to the human brain, as they lack the dynamic adaptability, biochemical signalling, and 
complex interconnectivity of biological neural systems. They are formed by nodes, arranged in 
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units, in turns distributed in a series of layers. The number of units for each layer depends on the 
complexity of the task the ANNs have been conceived to solve and may vary from a few dozen 
to millions. The learning process of an ArtiĔcial Neural Network involves updating the connection 
strength (weight) of a node. By using the error between the predicted value and the correct value, 
the weight in the network is adjusted so that the error is minimized and an output closer to the target 
is obtained (Su-Hyun et al., 2018). These layers are particularly effective in recognizing patterns for 
handling various tasks including predictive modelling and adaptive control. For this reason, they offer 
promising applications in climate research such as analysing satellite imagery to detect deforestation 
patterns and track ice sheet melting, enhancing extreme weather forecasting through more precise 
modelling of atmospheric conditions, and optimizing renewable energy management by predicting 
solar and wind power output based on meteorological data. 

The recent development of complex neural networks has unlocked various applications in the Ĕeld 
of Computer Vision (CV) by enabling high accuracy image classiĔcation and target detection. CV 
signiĔcantly enhances adaptation strategies by automating the monitoring of climate-induced 
changes such as coastal erosion or habitat degradation, informing timely interventions. This is 
particularly useful for processing a vast number of satellite images with a plethora of applications 
from monitoring the evolution of coastal erosion or marine oil spills detection. 

The application of ML to Natural Language Processing (NLP) has recently gained momentum for 
representing and analysing human language computationally. The Ĕeld of NLP is related to different 
theories and techniques that focus on the interaction between computers and humans through 
natural language. NLP is essential for analysing climate-related policy documents, facilitating climate 
education, and enhancing public engagement through clear, actionable communication. NLP 
methods enable AI systems to understand and process human language data from scientiĔc reports, 
policy documents, or social media to gauge public sentiment and disseminate information about 
climate change effectively. This capability aids in synthesizing information, generating insights, and 
enabling decision-making for climate action. While still in development, GenAI can simulate climate 
models to predict future scenarios and develop adaptive strategies based on individual or regional 
climate data. 

GenAI systems are mostly trained using self-supervised learning, a paradigm where the system 
optimizes its model to predict part of its input from other parts of its input without the need of 
manual labelling of the training dataset as text, images, audio, or code as outputs in response to 
prompts, based on learned patterns. By enabling the creation of general purpose services in text, 
image, and audio creation companies developing those tools, and using a freemium business model, 
enabled wide access to GenAI. Large Language Models (LLMs) are specialized for tasks like text 
generation, summarization, translation, and question-answering, and excel at producing coherent 
and contextually relevant text. ML includes models like linear regression for predicting continuous 
variables, logistic regression for binary classiĔcation, and decision trees for both regression and 
classiĔcation tasks. DL features models such as Convolutional Neural Networks (CNNs) for image 
recognition, Recurrent Neural Networks (RNNs) for sequential data, and transformers for NLP.

In the realm of CV, models like You Only Look Once (YOLO) enable real-time object detection, 
while Faster R-CNN is valuable for object detection and image recognition. NLP leverages models 
like BERT (Bidirectional Encoder Representations from Transformers) for text classiĔcation 
and sentiment analysis and LSTM (Long Short-Term Memory) for language modelling and  
sequence prediction. 



8

Generative
AI

Deep 
Learning

Artificial 
Intelligence

Machine 
Learning

LLMs

Natural 
Language 

Processing

Computer

Vision

Figure 1. ArtiĔcial Intelligence and its subĔelds or domains 

This adaptability is particularly beneĔcial in addressing climate change mitigation and adaptation 
challenges. For example, ML models are frequently used to solve optimization problems. 
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3. Methodology

The methodology of this paper includes a thorough literature review to assess the landscape of AI’s 
beneĔts, risks, and challenges, coupled with case study inputs provided by stakeholders involved in 
AI for climate action in developing countries to gather diverse insights and experiences. These case 
studies aimed to identify practical and impactful AI applications and capture a range of perspectives 
relevant to ongoing efforts. In addition, the TEC facilitated a rigorous peer review process involving 
multidisciplinary expertise to ensure the paper reĕects diverse expert opinions and is aligned with 
the challenges faced by developing countries, particularly SIDS and LDCs. 

3.1. JustiĔcation of 2017–2024 Time frame 

The timeline from 2017 to 2024 was based on several key factors. First, there have been rapid 
technological advancements in AI, ML, and related Ĕelds during this period. Also, the proliferation of 
AI research speciĔcally targeting climate action has been particularly notable since 2017. Moreover, 
global awareness and urgency about climate change have increased during 2017–2024.

3.2. Literature Review

A comprehensive literature review was conducted to provide an overview of the current state of 
play regarding the utilization of AI for climate action in developing countries. In terms of the latter, 
the review included recent theoretical and empirical studies that addressed these regions in the 
context of AI for climate change, along with the existing best practices and lessons from developed 
countries that they can adopt to maximize positive outcomes and overcome difĔculties or obstacles 
in implementing AI solutions for climate action. The methodological approach to the literature review 
encompassed the following steps:

DeĔning search criteria: This initial step involved setting precise search criteria to ensure a 
comprehensive and targeted review of relevant literature. Keywords and phrases were carefully 
chosen to capture a wide array of publications pertinent to the application of AI to climate action in 
developing countries. The search criteria were aligned with the thematic focus of the paper, which 
includes exploring current AI applications in climate mitigation and adaptation strategies, analysing 
case studies from LDCs and SIDS, and evaluating the beneĔts and challenges of AI adoption, with 
the aim of providing recommendations for policymakers and stakeholders to enhance AI’s role in 
advancing climate strategies in these regions.
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Selecting databases: A selection of key academic databases was made to source relevant scholarly 
articles, research papers, and reports. The databases chosen include Web of Science (WoS), 
Scopus, ScienceDirect, SpringerLink, and Google Scholar. These databases were selected for their 
comprehensive coverage of multidisciplinary literature on AI applications in climate action. The 
literature review speciĔcally prioritized studies conducted in developing countries, including LDCs 
and SIDS, aligning with the thematic scope of this technical paper.

Inclusion and exclusion criteria: Publications from 2017 to 2024 were selected to ensure the review 
reĕects the most recent developments in the Ĕeld. The focus is on peer-reviewed articles, research 
papers, and reports that directly address the opportunities, applications, challenges, and risks of AI in 
climate action. Peer-reviewed sources were prioritized. Non-peer-reviewed sources and publications 
outside this time frame were excluded. 

Search and selection: Relevant publications were identiĔed through a comprehensive search across 
selected databases using speciĔc keywords and phrases related to AI applications in climate action. 
The search included terms such as ‘artiĔcial intelligence for climate mitigation/adaptation’ and 
‘machine/deep learning for climate change’, among others. These publications were subsequently 
scrutinized based on their abstracts and alignment with the research objectives.

Detailed analysis: A comprehensive review of selected scholarly articles, research papers, and 
reports was conducted to extract nuanced insights into AI’s beneĔts, risks, and challenges for 
climate action in developing countries, with particular emphasis on LDCs and SIDS. Relevant 
information – spanning AI applications, observed outcomes, challenges, geographical variations, 
and policy implications – was systematically extracted and categorized according to predeĔned 
themes. Each source underwent critical evaluation based on factors such as peer-reviewed status, 
methodological transparency, relevance to the research objectives, and consistency of Ĕndings, 
ensuring methodological rigour and credibility for a robust synthesis of Ĕndings.

Synthesis of Ĕndings: Insights from the analysis were then consolidated to create a cohesive 
overview of AI’s role in climate action across developing countries. This integrated perspective 
identiĔes key patterns and relationships, serving as the foundation for subsequent sections of the 
technical paper and informing discussions on strategies to optimize AI-driven climate solutions.

3.3. Call for Case Study Submissions

A call for case study submissions was made to a range of stakeholders actively involved in AI for climate 
action activities in developing countries, speciĔcally targeting those engaged in research or the 
implementation of AI-related projects relating to SIDS and LDCs. The call was extended to academic 
researchers, practitioners, industry professionals, and policymakers who are directly involved 
in the deployment and management of AI technologies in various domains. These submissions 
were instrumental in gathering in-depth insights and Ĕrst-hand accounts of the opportunities and 
challenges associated with AI projects. The primary goal of these discussions was to unearth relevant 
case studies that could be detailed in the thematic chapters of the paper, thereby providing concrete 
examples of how AI is being applied in real-world settings in developing countries, particularly SIDS 
and LDCs. This approach ensured that the paper was grounded in actual experiences and practices, 
enhancing its practical value to stakeholders in similar contexts. 
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3.4. Peer Review

A peer-review group was established to provide speciĔc suggestions for improvements to the 
draft technical paper. The composition of the peer-review group reĕects a strategic effort to 
include diverse knowledge and perspectives on AI for climate action. This group was comprised of 
13 experts from academia, industry, NGOs, governmental bodies, and international organizations 
who are recognized for their work in AI, climate science, policy implementation, and related issues. 
The peer review of the draft technical paper was conducted in July 2024. Key aspects of their 
involvement included:

•	 Validation of content: They scrutinize the draft to verify the scientiĔc accuracy and relevance 
of the content, ensuring that it reĕects the latest advancements and understandings in the Ĕeld.

•	 Inclusion of case studies: Members propose additional case studies that illustrate successful 
applications or ongoing initiatives of AI in climate action, particularly those that are pertinent to 
the challenges faced by SIDS and LDCs.

•	 Structural feedback: They provide critical feedback on the structure and presentation of the 
paper to improve its readability, impact, and ability to communicate key messages effectively to 
policymakers as well as practitioners and researchers.
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4. ArtiĔcial Intelligence  
for Climate Action in Developing Countries

This section offers a comprehensive analysis of existing literature and empirical evidence, focusing 
on how AI algorithms have been leveraged in addressing climate challenges across different global 
contexts, including both the beneĔts and risks associated with AI adoption in LDCs and SIDS while 
examining the regulatory landscapes that inĕuence AI deployment. The case studies have been 
selected from inputs provided through the call for case study submissions and various literature, 
including the CTCN knowledge product on AI technologies used in developing countries in the Asia–
PaciĔc region (CTCN & NIGT, 2024).

4.1. Early Warning Systems

AI and ML algorithms have been used for the following:

•	 Flood warning systems: AI systems that use rainfall data, river levels, and weather patterns 
collected by Internet of Things (IoT) sensors to predict ĕood events have been effectively 
implemented in several regions, providing communities with timely alerts and enabling proactive 
measures to minimize damage. 

•	 Food security early warning systems: AI systems that use data from weather stations, 
satellite imagery, and soil sensors have provided harvest management insights and predictions 
helping farmers optimize planting and harvesting times, manage resources more efĔciently, and 
anticipate potential issues such as pest infestations or adverse weather conditions. 

•	 Hurricane prediction models: Combining satellite and remote sensing data with AI-
driven analysis improves the prediction of hurricane paths and intensity, enhancing disaster 
preparedness and evacuation planning. AI-enhanced early warning systems have led to 
improvements in forecast accuracy, longer lead times for warnings, and better resource 
allocation for emergency response, as seen in recent hurricane seasons.

•	 WildĔre detection: Integrating data from IoT sensors on temperature, humidity, and wind 
speed with AI algorithms has improved the ability to detect and predict wildĔres. This early 
detection allows for timely deployment of ĔreĔghting resources, minimizing the destruction 
caused by these Ĕres.
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CASE STUDY

UN EARLY WARNINGS FOR ALL INITIATIVE (EW4ALL) 

Country: LDCs and SIDS - Ethiopia

Entities involved: Microsoft, Planet Labs PBC, University of Washington Institute 
for Health Metrics and Evaluation (IHME), United Nations OfĔce for Disaster Risk 
Reduction (UNDRR)

Brief description

The Early Warnings for All Initiative, co-led by the World Meteorological Organization 
(WMO) and the United Nations OfĔce for Disaster Risk Reduction (UNDRR), with 
collaboration from the International Telecommunication Union (ITU), and the 
International Federation of Red Cross and Red Crescent Societies (IFRC), is a high-
level initiative to help to ensure that everyone on Earth is protected from hazardous 
weather, water, or climate events through life-saving early warning systems by the 
end of 2027. With human-induced climate change leading to more extreme weather 
conditions, the need for early warning systems is more crucial than ever. Systems that 
warn people of impending storms, ĕoods or droughts are not a luxury but a cost-
effective tool that saves lives and reduces economic losses.

Early warning systems have helped decrease the number of deaths and have reduced 
losses and damages resulting from hazardous weather, water or climate events. But 
major gaps still exist, especially in SIDS and LDCs. The United Nations Secretary-
General, António Guterres, in 2022 called for a global effort to ensure that early 
warning systems protect everyone on Earth by 2027.

Climate Change Mitigation and/or Adaptation Impacts and Results

Microsoft, Planet Labs and the University of Washington Institute for Health Metrics 
and Evaluation (IHME), are employing AI, satellite imagery, and predictive modeling 
to accurately estimate the population sizes of communities that are at greatest risk 
from climate change, as well as tracking population growth over time. Gaining a clear 
understanding of where people live is foundational to taking preparatory measures 
and providing essential resources.

In collaboration with UNDRR and other partners under the Early Warnings for All 
Initiative, Ethiopia’s Ministry of Irrigation and Lowlands and the Ethiopian AI Institute 
are utilizing AI-driven methods to identify communities at risk of disaster impacts. This 
initiative is expected to expand to additional Early Warnings for All priority countries, 
addressing evolving disaster preparedness needs.

Previous applications of AI and satellite imagery have demonstrated potential in 
identifying at-risk communities. In collaboration with our non-proĔt partner SEEDS 
in India, we apply AI and high-resolution satellite imagery to pinpoint homes that are 
vulnerable to destruction in cyclone-prone areas. This enables SEEDS, their partners, 
and local governments to focus their disaster preparedness and response outreach 
efforts on the most high-risk regions, thereby saving lives and reducing damage.
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Recent catastrophic events in Libya and Morocco have also underscored the critical 
importance of swiftly comprehending the magnitude and speciĔcs of affected 
populations and regions. Time is of the essence in such situations. Recent applications 
of high-resolution satellite data from Planet Labs PBC, combined with AI, have shown 
potential in assisting affected communities. The initiative aims to support response 
and recovery efforts by sharing this valuable information.

Challenges and Lessons Learned Regarding Development and Implementation 

The journey of developing and implementing the EW4All Initiative is associated with 
several key challenges and also provides valuable lessons:

The Importance of Comprehensive Global Mapping: One critical lesson learned 
from this project is the stark realization that, in developed countries, there exists an 
illusion that the maps are up-to-date and fully representative of where people reside. 
However, the 2023 earthquake in Afghanistan revealed a signiĔcant gap: a majority 
of those affected in rural areas were not accounted for on any existing maps. This 
underscored the urgent need to ensure that every individual on the planet is mapped, 
a goal that is now more attainable using AI and thanks to the availability of Planet’s 
daily satellite data. This capability represents an innovative step towards achieving 
comprehensive global mapping, which is crucial for effective disaster response and 
resource allocation.

The Challenge of Accessible AI Tools in Disaster Response: Another key lesson from 
this project concerns the accessibility of AI tools in disaster response scenarios. The 
project highlighted that the tools required to run AI models in disaster-affected areas 
remain too complex for end-users, particularly those in organizations that need 
mapping data but lack in-house software development expertise. This gap was a 
primary driver behind the development of Project HASTE (High-speed Assessment 
and Satellite Tracking for Emergencies). Project HASTE is an open-source tool 
designed to eliminate the need for advanced software development skills, enabling 
a broader range of users to leverage AI for rapid and effective disaster response. 
This innovation is anticipated to enhance the efĔciency and inclusivity of disaster 
management efforts worldwide.
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CASE STUDY

AI4SIDS 

Country: SIDS

Entities involved: The University of the West Indies, St. Augustine Campus, as 
part of the AI for Climate Research Cluster within the TTLAB Data Science Group.

Brief description

The AI-Driven Climate Resilience Platform for SIDS (AI4SIDS) aims to enhance disaster 
preparedness and resilience in SIDS through AI-driven solutions. By integrating real-
time data, predictive analytics, AI-driven models including Large Language Models 
(LLMs), and IoT technologies, it provides actionable insights for governments and 
communities, enabling more effective disaster risk management with minimal human 
intervention. This transformative platform, leveraging advanced AI technologies like 
GPT-4 for real-time data analysis and OpenAI’s Whisper for speech-to-text conversion, 
AI4SIDS provides localized weather alerts, educational tools, and predictive analytics 
that empower communities to act before disaster strikes. This female-led project was 
the winner of the AI Innovation Grand Challenge hosted by the Technology Executive 
Committee in partnership with Enterprise Neurosystem.

Climate Change Mitigation and/or Adaptation Impacts and Results

AI4SIDS is currently under development, and it aims to integrate cutting-edge 
technologies to offer comprehensive solutions, including:

•	 Real-time Data Collection: Autonomous processing of data from IoT sensors, 
social media, weather forecasts, and more.

•	 Predictive Analytics: Advanced algorithms powered by GPT-4 predict climate 
events, allowing governments and communities to prepare in advance.

•	 Localized Alerts: Multi-channel alerts delivered via mobile, SMS, TV, and radio in 
local languages.

•	 Educational Resources: Tailored materials to raise community awareness and 
improve disaster readiness.

•	 Automated Feedback Loops: Enables governments to reĔne and optimize 
disaster response strategies.
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CASE STUDY 

EARLY WARNINGS SYSTEM FOR CROP PHENOTYPING  
AND FOOD AND NUTRITION SECURITY 

Country: Kenya

Entities involved: : Local Development Research Institute (LDRI), Deutsche 
Gesellschaft für Internationale Zusammenarbeit (GIZ) – FAIR Forward.

Brief description

The cooperation between LDRI and GIZ’s FAIR Forward enables smallholder farmers 
to use AI technology for crop yield prediction and monitoring in Kenya. The AI Early 
Warning System developed by LDRI, and FAIR Forward enhances harvest management 
for smallholder farmers by delivering timely and accurate crop yield predictions. By 
integrating data from weather stations, satellite imagery, and soil sensors, the system 
provides precise, localized information, enabling farmers to anticipate adverse 
conditions and implement proactive measures. This results in reduced crop losses 
due to climate variability and optimized resource use. The system incorporates local 
languages, including Kiembu, Luhya, Kikuyu, and Kiswahili, to enhance accessibility for 
diverse farming communities, thereby broadening its potential impact.

Climate Change Mitigation and/or Adaptation Impacts and Results

The Early Warning System enables farmers to make informed decisions, thereby 
minimizing crop losses and optimizing resource use in the face of climate variability. 
By offering precise, localized information, the system helps farmers anticipate and 
mitigate potential climate threats. For instance, monitoring 400 farms across 6 
agro-ecological zones in Kiambu and Embu counties has demonstrated the system’s 
capability to accurately predict crop yields and identify potential crop failures. The 
integration of local languages – such as KiEmbu, Luhya, Kikuyu, and Kiswahili – ensures 
that the system’s advice is accessible and actionable for a diverse range of farmers, 
increasing its effectiveness across different linguistic communities. Additionally, the 
project has created two open, quality datasets, including a land-use/farm boundary 
estimation dataset and a temporal image-based dataset, which enhance the system’s 
ability to provide actionable insights. The development of algorithms for analysing 
earth observation data further supports crop-speciĔc early warning mechanisms and 
predictive climate-change recommendations.



17

There are ongoing discussions to expand the system to Uganda and Tanzania, with 
adaptations for new crops and regions, further supporting the agricultural community 
across East Africa. This initiative addresses both immediate agricultural needs and 
contributes to long-term food security and economic stability in the region.

Challenges and Lessons Learned Regarding Development and Implementation

Challenges encountered during the implementation of the initiative included ensuring 
data accuracy from diverse sources, integrating AI models with local agricultural 
practices, and addressing language barriers. The project highlighted the importance 
of community involvement, continuous adaptation to local contexts, and robust 
evaluation metrics. Expanding to new regions and crops required careful planning 
and collaboration with local stakeholders. Extreme drought tendencies caused acute 
food insecurity for 4.2 million people in Kenya, particularly in the Arid and Semi-Arid 
Lands (ASALs). Farmers mistrusted inconsistent weather predictions and relied on 
indigenous signs. Involving farmers in data collection has built trust and ensured data 
accuracy. Training and equipping Village Based Advisors (VBAs) with smartphones 
and the ODK software was critical for efĔcient data collection.
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4.2. Earth Observation 

Through the use of satellites, EO data provide unequivocal evidence of the changes taking place on 
Earth by monitoring parameters such as temperature, sea levels, atmospheric gases, ice, and forest 
coverage. This scientiĔc data supports our understanding of how the complex Earth system works 
and aims to provide decision-makers with hard evidence of the need for putting forward adaptation 
and mitigation plans.

In this context AI algorithms present a wide range of applications including transforming a satellite 
image to a street map, cloud detection in order to reduce the volume of data to be downlinked to the 
ground, autonomous detection, and classiĔcation of maritime vessels, as well as forest monitoring 
and anomaly detection. The following areas highlight the key applications in this regard:

4.2.1. Examination of Sea Level Rise and Coastal Transformations

The accurate prediction and monitoring of sea level rise are important for the protection of coastal 
areas and the planning of risk mitigation strategies. Various AI-based methods have been developed 
to address this complex issue, signiĔcantly enhancing the accuracy and efĔciency of sea level 
predictions. Techniques like hybridization, ensemble modelling, data decomposition, and algorithm 
optimization are identiĔed as key strategies for enhancing sea level predictions. DL, in particular, has 
shown superior performance due to its ability to automatically extract features and store memory, 
making it more effective than traditional ML models.

The use of AI in monitoring sea level rise has been critical for SIDS like the Maldives, where rising 
waters pose a signiĔcant threat to infrastructure and communities (UNFCCC, 2023). AI models 
enhance the accuracy of sea level predictions by analysing satellite imagery and oceanographic 
data in real time, allowing policymakers to develop proactive coastal defense strategies and disaster 
preparedness measures. 

Balogun and Adebisi (2021) integrate a broad range of ocean-atmospheric variables to predict 
sea level variations along the West Peninsular Malaysia coastline using LSTM models. Their 
Ĕndings suggest that atmospheric processes signiĔcantly inĕuence prediction accuracy and that 
combining oceanic and atmospheric variables signiĔcantly improves model performance. The 
LSTM model, which incorporates both types of variables, demonstrates the highest accuracy 
in most locations or regions, underscoring the importance of considering multiple inĕuencing 
factors in sea level prediction.

Ishida et al. (2020) develop an hourly-scale coastal sea level estimation model using LSTM network. 
The model includes the effects of gravitational attractions, seasonality, storm surges, and global 
warming. Results show that the LSTM model accurately reconstructs these effects and improves 
prediction accuracy when incorporating long-term duration temperature data, demonstrating the 
robustness of DL in sea level forecasting.
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CASE STUDY 

SAFEGUARDING COASTAL ECOSYSTEMS: SOLOMON ISLANDS’ 
INTEGRATED COASTAL ZONE MANAGEMENT (ICZM) WITH AMAP

Country: Solomon Islands

Entities involved: Government of the Solomon Islands, CTCN

Brief description

The degradation of coastal ecosystems, such as mangroves, poses a signiĔcant 
threat to the country’s biodiversity, food security, and resilience to climate change. 
Mangroves play a crucial role in coastal protection, providing a natural barrier 
against storms and erosion. To address these challenges, the G Government of 
the Solomon Islands, with support from the CTCN’s technical assistance project, 
has implemented ecosystem-based adaptation solutions for mangrove protection. 
The development of AI-based Mangrove Adaptive mapping tools in PaciĔc Island 
regions (AMAP), the output of the CTCN technical assistance (TA), represents a 
signiĔcant step in this direction.

AMAP processes satellite images, Ĕltering out those with excessive cloud cover 
and removing clouds from the remaining images. It then calculates a mangrove-
speciĔc index to facilitate mangrove detection. The U-Net deep learning algorithm 
is employed to classify mangroves based on the mangrove-speciĔc index. This 
enables the generation of detailed maps illustrating mangrove distribution, aiding 
in conservation, restoration, and management efforts. AMAP leverages historical 
climate data and climate change scenarios to develop models using various machine 
learning algorithms. These models are then combined through an ensemble approach 
to predict changes in vegetation species, including mangroves. 

Climate Change Mitigation and/or Adaptation Impacts and Results

Improved Monitoring: AMAP facilitates the assessment of mangrove health and 
distribution over time, supporting the identiĔcation of areas requiring protection 
or restoration. Enhanced Management: The system equips managers with the 
information needed to make informed decisions about conservation and adaptation 
strategies, which ensures the sustainable management of mangrove ecosystems. 

Climate Change Adaptation: AMAP’s ability to predict future habitat distributions 
under different climate change scenarios supports the development of proactive 
adaptation measures to protect mangroves and the communities that depend on 
them. Resource Optimization: By automating the analysis of satellite imagery and 
providing detailed mangrove maps, AMAP saves valuable time and resources, allowing 
for more efĔcient and effective conservation efforts.
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4.2.2. Detection of Deforestation and Forest Degradation

Deforestation is a critical global environmental challenge with far-reaching implications for 
biodiversity, climate change, and livelihoods. Satellite imagery and IoT sensors, combined with 
AI algorithms, enable the detection and monitoring of deforestation and forest degradation. AI 
models analyse high-resolution optical and laser-based satellite images, often coupled with ground-
truth data, to identify changes in forest cover, detect illegal logging activities, and monitor forest 
health over time. They can aid in mitigating climate change by implementing efĔcient and precise 
sustainable forest management practices to decrease deforestation (Liu et al., 2021). They can 
distinguish between different types of vegetation and land cover, making it possible to accurately 
track the extent and rate of deforestation. Haq et al. (2024) explored the application of AI, IoT, and 
remote sensing in addressing deforestation. These technologies facilitate real-time monitoring, 
early detection, and intervention in activities like illegal logging, plant diseases, and forest Ĕres. By 
analysing the strengths and limitations of IoT, satellite imagery, drones, and AI algorithms, the study 
underscores their potential in forest conservation. 

Nguyen-Trong and Tran-Xuan (2022) focused on improving forest cover change detection using 
AI-based remote sensing techniques in Viet Nam. Traditional methods, such as multi-variant 
change vector analysis (MVCA) and normalized difference vegetation index, rely heavily on domain 
knowledge to set threshold values, limiting their applicability. The study proposed a new method 
utilizing multi-temporal Sentinel-2 imagery and a U-Net-based AI segmentation model to detect 
coastal forest cover changes. This approach minimizes the need for extensive domain knowledge by 
harnessing available datasets and ground-truth labels. The results showed a high accuracy of 95.4% 
in detecting forest changes and outperformed the traditional MVCA method by 3.8%, highlighting 
its effectiveness in forest resource management and planning in Viet Nam. 

In Project Guacamaya (Elliott, 2024) in Colombia the CinfonIA Research Centre, the Instituto Sinchi 
and Microsoft’s AI for Good Lab are using best-in-class AI models to monitor deforestation and 
protect the biodiversity of the ecosystem. This project combines satellite imagery, camera traps, and 
bioacoustics data to monitor and analyse deforestation patterns rapidly and accurately reducing the 
time required to identify deforestation hotspots, enabling quicker response and intervention. The 
initiative supports conservation efforts and aids in the creation of precise maps and data crucial for 
reforestation and carbon capture projects. 

Dominguez et al. (2022) utilized a dense neural network for spatial data modelling and an LSTM 
for temporal data on deforestation to forecast incremental deforestation and deforestation rates in 
the Amazon rainforest. By comparing prediction results and continuously retraining the model with 
new data, the authors were able to estimate future forest loss rates, enabling proactive measures. 
Their approach effectively produced deforestation risk maps, which were validated in study areas in 
Madagascar and Mexico and demonstrated the techniques’ reliability. 
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Recent AI initiatives by World Resources Institute (WRI) have made open, high-resolution global 
remote sensing datasets available for the Ĕrst time. These maps provide a valuable basis for 
monitoring and protecting forests worldwide, especially under newly introduced deforestation 
regulations, such as the EU Deforestation Regulation (European Commission, 2023) that require 
accurate forest monitoring for traceability. Lang et al. (2023) created a global canopy height map 
with a 10 m ground sampling distance, utilizing a probabilistic DL model that combines GEDI LIDAR 
data with Sentinel-2 optical imagery. This approach improves canopy-top height retrieval, quantiĔes 
uncertainty, and enhances the mapping of tall canopies with high carbon stocks, which are critical for 
effective carbon and biodiversity modelling. According to this map, only 5% of the global landmass 
is covered by trees taller than 30 m, and only 34% of these tall canopies are located within protected 
areas. This approach can support ongoing forest conservation efforts and foster advances in climate, 
carbon, and biodiversity modelling.

However, there remains a need for more precise local adaptation and validation, particularly 
through the integration of ground reference data collected through direct on-site observation, as 
this enhances the accuracy of AI models by correcting biases, reĔning predictions, and ensuring 
alignment with real-world environmental conditions. These ground reference data are crucial for 
improving the accuracy and relevance of remote sensing data and ensuring that local conditions 
and community needs are adequately considered. Such validation is important for the development 
and reĔnement of existing AI approaches and global maps in the Ĕeld of forest monitoring and 
protection. For example, in Côte d’Ivoire and Ghana, where cocoa cultivation is a signiĔcant driver 
of forest loss, integrating ground reference data, such as Ĕeld-based deforestation assessments 
and satellite-derived land cover classiĔcations, has proven important for accurate mapping and 
understanding of the impact of agricultural expansion (Kalischek et al., 2023). Similarly, in Southeast 
Asia, where commodity-driven deforestation affects carbon stocks and biodiversity, an automated 
approach using DL for canopy height estimation from GEDI LIDAR and Sentinel-2 imagery has been 
developed. This method provides high-resolution maps of canopy top height with an accuracy of 
86%, classiĔes High Carbon Stock (HCS) forests and degraded areas and has produced the Ĕrst high 
carbon stock map for Indonesia, Malaysia, and the Philippines (Lang et al, 2021). The combination 
of ground-based validation and AI-driven modelling in such applications strengthens the precision 
of local adaptation strategies, demonstrating how AI can enhance forest monitoring and protection 
through improved accuracy and classiĔcation of at-risk areas.
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CASE STUDY 

AI FOR FOREST CONSERVATION: AI-GENERATED INDICATIVE  
HIGH CARBON STOCK MAPS IN INDONESIA AND INDIA 

Country: Indonesia

Entities involved: Deutsche Gesellschaft für Internationale Zusammenarbeit 
(GIZ) – FAIR Forward, JKPP (Network for Participatory Mapping), ETH Zürich 
Ecovision Lab, High Carbon Stock Approach (HCSA) foundation, Indonesian 
government agencies, including Bappenas (Indonesia’s National Development 
Planning Agency).

Brief description

In Indonesia, the FAIR Forward initiative has collaborated with JKPP, HCSA and 
Bappenas to create an AI-driven, large-scale indicative map of high carbon stock 
(HCS) forests. This project involves comprehensive Ĕeld data collection (Figure 1) 
across key regions such as Sumatra, Kalimantan, and West Papua. Biomass data are 
collected from ground forest plots and validation points to ensure accurate mapping. 
The project utilizes remote sensing technology and ML to identify and classify HCS 
areas, which include primary forests, regenerating forests, and mixed agroforestry 
landscapes. The HCS approach is currently being scaled to India with the Government 
of Goa to build forest Ĕre maps and accurate biomass maps. The project will create 
open-source, AI-based tools for early forest Ĕre detection and monitoring through 
community engagement and volunteering. Given the global relevance of this subject, 
the open tools will utilize remote sensing and ML to potentially create a global carbon 
stock map. 

Climate Change Mitigation and/or Adaptation Impacts and Results

The HCS maps developed through this initiative are crucial for Indonesia’s climate 
change mitigation strategies by providing detailed carbon stock data that enhances 
carbon accounting and conservation planning. For example, in Kalimantan, the project 
has leveraged Ĕeld plot data and remote sensing technologies to delineate extensive 
high carbon stock forest areas. This approach not only aids in effective conservation 
planning but also fortiĔes climate change mitigation strategies by prioritizing the 
protection of both primary and regenerating forests.

The integration of Free, Prior, and Informed Consent (FPIC) alongside indigenous 
knowledge enriches the conservation process, ensuring that local rights are respected 
and that conservation strategies beneĔt from local expertise. This approach fosters 
trust and collaboration between communities and conservationists, leading to more 
sustainable and culturally sensitive outcomes. 
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The open-access nature of these datasets also facilitates global research and 
promotes international cooperation. By making data available for public use, the 
initiative supports a broader understanding of forest dynamics and climate change 
impacts. Collaboration with national and regional agencies ensures that this data is 
effectively incorporated into land use planning frameworks, including Indonesia’s new 
forest conservation policy. This policy uses HCS maps to guide sustainable land use 
and forest protection, showing the project’s impact on shaping national strategies for 
climate resilience and forest conservation.

Challenges and Lessons Learned Regarding Development and Implementation

The project faced several key challenges: Ensuring data accuracy across diverse 
landscapes required tailored approaches and extensive Ĕeld validation, highlighting 
the need for collaboration with local experts to address landscape-speciĔc issues. 
Integrating traditional knowledge with advanced biomass data proved crucial yet 
challenging, underscoring the importance of engaging local communities to enrich 
the contextual understanding of forest ecosystems. Navigating the complexities 
of Free, Prior, and Informed Consent (FPIC) and managing data sharing with local 
communities involved addressing varied cultural, legal, and ethical considerations. 
This demonstrated the necessity of a robust FPIC process, continuous community 
engagement, and transparent data governance to build trust and ensure ethical 
data use. Logistical challenges in Ĕeld data collection, including coordinating with 
local partners and managing activities in remote areas, emphasized the importance 
of careful planning and strong partnerships. Additionally, the implementation of 
advanced technologies like GIS and ML required signiĔcant capacity-building 
among local stakeholders, revealing that training and support are crucial for effective 
technology use. Overall, the project highlights the need for a collaborative approach 
that integrates technology with local knowledge while ensuring ethical and effective 
data practices.
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CASE STUDY: AI FOR FORECASTING AND PREVENTING 
DEFORESTATION IN THE BRAZILIAN LEGAL AMAZON

Country: Brazil 

Entities Involved: Amazon Institute of People and Environment (Imazon), Pará 
State Public Prosecutor’s OfĔce (MPPA), Environmental Agency of Altamira-PA, 
Fundo Vale, Climate and Land Use Alliance (CLUA), Microsoft Brazil

Brief description

The PrevisIA project leverages AI and satellite imagery to detect and forecast 
deforestation in Brazil’s Legal Amazon. By integrating historical deforestation 
data, topographical variables, and socio-economic indicators, the system predicts 
deforestation risks with high precision. A key feature of PrevisIA is its AI model that 
annually detects the emergence of unofĔcial roads – strong predictors of deforestation 
and Ĕres – using Sentinel-2 imagery. Approximately 95% of deforestation occurs 
within 5.5 km of roads, and 90% of Ĕres within 4 km.

The initiative is structured around three pillars:

i) AI-driven road detection using high-volume satellite data; 
ii) Risk forecasting and dissemination via a geospatial dashboard; and 
iii) Collaborative enforcement with government partners.

A working group led by the Pará State Prosecutor’s OfĔce monitors deforestation 
and acts on AI-generated alerts through Ĕnes, embargoes, or legal action. 
Forecast accuracy has reached 73% within a 4 km radius, strengthening legal and 
administrative enforcement.

Figure 2: Training sessions on transferring geospatial technology
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Climate Change Mitigation and/or Adaptation Impacts and Results

PrevisIA’s AI forecasts have informed targeted enforcement actions in Pará, a high-
deforestation zone. Reports produced at municipal and property levels enable 
prosecutors to identify illegal deforestation and initiate sanctions. Since 2024, risk-
based notiĔcations are issued to landowners based on AI-detected alerts. The project 
demonstrates a scalable model for integrating AI into legal action, forest governance, 
and climate mitigation. 

Figure 3: PrevisIA forecast assessment against PRODES’ deforestation data  
for 2021 to 2024. The average accuracy for this period is 73% up to 4 km 

Challenges and Lessons Learned Regarding Development and Implementation

Key lessons include the importance of predictive over reactive enforcement and the 
need for continuous geospatial capacity-building within legal institutions. Scaling 
the project across Brazil’s Amazonian states requires Ĕnancial sustainability, for 
which REDD+ projects are being considered. Integrating adaptation plans to address 
concurrent climate risks, such as extreme droughts, is essential to protecting both 
forests and local communities.



26

4.2.3. Detection of Pollution Sources

In addition to harming human health, pollution hinders sustainable ecological growth. AI and ML 
algorithms applied to the analysis of satellite imagery and IoT data can streamline the identiĔcation 
and monitoring of pollution and its sources by analysing the spectral signatures of various pollutants 
and chemicals. 

Remote sensing, in particular historical aerial photographs, have been useful in monitoring and 
documenting changes at hazardous sites over time, providing reliable data for pollution detection 
and mitigation (Popescu et al., 2024; Mertikas et al., 2021). Jia et al. (2021) developed a new 
modelling method to forecast soil arsenic levels using high-resolution aerial imagery (HRAI). This 
method employs cameras mounted on aircraft to capture high-resolution (0.1–0.5 m) images of 
large areas. Four different ML algorithms were constructed to predict arsenic risk levels, with the 
Extreme Random Forest (ERF) algorithm achieving higher level prediction and accuracy. Remote 
sensing and aerial imagery provide continuous spatial data which, when combined with ML models, 
produce highly accurate maps of hazardous substances in the environment – something that 
standard geostatistical techniques could not achieve (Popescu et al., 2024). 

One notable application of AI in environmental monitoring is the use of electronic nose (E-nose) 
technologies. These technologies employ olfactory algorithms to analyse sensor data and detect 
hazardous chemicals by their unique chemical signatures, allowing for immediate response to 
potential threats (Jeong and Choi, 2022; Popescu et al., 2024). E-nose technologies have diverse 
applications, including monitoring urban air quality, detecting industrial leaks, and identifying 
hazardous materials (Jeong and Choi, 2022) including volatile organic compounds (VOCs), methane 
and emissions from industrial activities. 

Challenges remain, such as ensuring the accuracy and reliability of these sensors and Ĕnding optimal 
methods to integrate them at scale into current environmental monitoring systems.

4.2.4. Biodiversity Monitoring and Assessment

Ecosystem biodiversity plays an important role in countering climate change, and AI systems can 
support its monitoring and assessment by helping identify various species and habitats from satellite 
images, providing data on species distribution and habitat health, usually a task that would require 
manual data annotation and extensive time consumption without the support of AI.

Numerous examples demonstrate the growing use of AI in enhancing biodiversity monitoring 
and conservation efforts. Rule-based systems like ArtiĔcial Intelligence for Ecosystem Services 
(ARIES) are among the most common and popular tools for modelling ecosystem services (Bibri, 
2024; Nishant et al., 2020). Empirical studies further validate these applications (Domisch et al., 
2019; Sharps et al., 2017; Willcock et al., 2018). As noted by Death (2015), ARIES integrates multiple 
ML models to understand complex ecological relationships, thereby improving the accuracy and 
effectiveness of biodiversity conservation strategies. 

In addition to ARIES, other AI algorithms play a signiĔcant role in biodiversity and ecosystem health. 
CNNs are used to analyse and classify high-resolution images for species identiĔcation and habitat 
mapping, providing critical data for conservation efforts (Christin et al., 2019). Random Forest 
(RF) algorithms are employed to model species distribution and predict biodiversity patterns by 
integrating various environmental variables (Cutler et al., 2007). Moreover, Bayesian Networks (BN) 
aid in understanding complex ecological interactions and predicting the impacts of environmental 
changes on ecosystem health (Marcot et al., 2006). 
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CASE STUDY 

USING ML TO IDENTIFY PRIORITY SITES FOR INTEGRATING 
MANGROVE RESTORATION WITH SUSTAINABLE AQUACULTURE 
INTENSIFICATION

Country: Indonesia and the Philippines

Entities involved: This project brought together experts from academia, 
conservation organizations, and the tech industry, including Arizona State 
University, Conservation International (CI), Konservasi Indonesia, and Thinking 
Machines. Funding was provided by the Climate Change AI Innovation Grants 
programme, with support from the Quadrature Climate Foundation, Schmidt 
Futures, and the Future Earth Canada Hub.

Brief description

In this example of an AI-powered climate solution applied in LDCs, a diverse team of 
academics, conservation practitioners, and tech industry experts developed a rapid 
assessment tool, powered by AI and Earth observation data, to identify and validate 
priority sites in Indonesia and the Philippines for deploying loans to shrimp farmers. 
This aimed to improve shrimp production and restore mangroves in the Climate Smart 
Shrimp (CSS) programme.

Shrimp aquaculture has grown 100-fold over the last 40 years, from an estimated 
74,000 metric tonnes in 1980 to 7.5 million metric tonnes in 2022. This rapid growth 
has come at the cost of critical coastal ecosystems, especially mangroves. While 
deforestation rates have decreased from 0.21% (1996–2010) to 0.04% (2010–2020), 
at least 35% of global mangroves were deforested in the late 20th century, and the 
ecosystem services and climate beneĔts they provided remain lost.

Conservation International’s CSS programme supports communities’ livelihoods and 
food security while also improving coastal resilience and adaptation to climate change. 
The initiative provides resources for small- and medium-sized farmers to sustainably 
intensify production on a portion of their farm in exchange for mangrove restoration 
on the remainder of the farm. This enables smaller farms to be more competitive 
within the global commodity shrimp market while providing sustained funding and 
opening available parcels for coastal mangrove restoration. But not all aquaculture 
farms are suitable for such an approach.

This project used ML and Earth observation data to identify and classify aquaculture 
farms that are abandoned or low productivity. The team then combined this information 
with open data on sea level rise, ĕood risk, infrastructure access, historical mangrove 
cover, and other attributes to identify viable sites for CSS. Identifying a pipeline of 
optimal sites accelerates CI’s ability to engage farmers, industry, and communities, 
and scale CSS.
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Climate Change Mitigation and/or Adaptation Impacts and Results

The site assessment tool enables CI and its project partners to apply CSS more 
efĔciently and to effectively support livelihoods and food security in shrimp 
aquaculture geographies while providing climate mitigation, climate adaptation, and 
coastal resilience beneĔts for coastal communities.

The site assessment tool enables CI and its project partners to apply CSS more 
efĔciently and to effectively support livelihoods and food security in shrimp 
aquaculture geographies while providing climate mitigation, climate adaptation, and 
coastal resilience beneĔts for coastal communities.

While the tool was designed to streamline the implementation of CSS, it can also guide 
conservation practitioners on where to focus other nature-based solution approaches. 
The tool can identify areas that are suitable candidates for restoring mangroves 
to increase forest cover and are also viable for intensifying shrimp aquaculture to 
contribute towards food security and support local livelihoods.

While the tool in its current form helps CI to rapidly evaluate the hundreds of thousands 
of potential hectares where CSS might be implemented and Ĕnd optimal locations, 
slight updates or changes to the scoring criteria could make this tool applicable in a 
wide range of coastal restoration applications.

Challenges and Lessons Learned Regarding Development and Implementation

In development and implementation of the tool, we encountered several challenges 
and learned an important lesson, namely:

•	 Public data on aquaculture production in LDCs are not available, restricting 
the use of potential AI approaches. We spent substantial resources developing 
training datasets for ML.

•	 Spatially explicit data on land cost and land tenure are also not available for many 
LDCs. As CI has developed more CSS sites, it has become clear that these two 
variables are critical determinants of project viability. We attempted to use proxy 
data related to land value and ownership, but we had insufĔcient resources to 
develop robust datasets.

AI tool developers need to consider unintended uses prior to product development.
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The study by Hirn et al. (2022) investigated the complex patterns of species coexistence in diverse 
ecological communities using GenAI. Understanding these patterns is crucial for biodiversity 
conservation, yet traditional experimental approaches struggle with the complexity caused by 
indirect interactions among species. To address this challenge, the authors applied cutting-edge 
ML techniques, speciĔcally Generative Adversarial Networks (GANs) and Variational Autoencoders 
(VAEs), to predict species coexistence in vegetation patches.

The GANs were highly effective in reproducing realistic species compositions and identifying 
species’ preferences for different soil types. Similarly, the VAEs demonstrated high accuracy, 
achieving above 99%. The study revealed that high-order species interactions tend to suppress 
the positive effects typically seen in simpler interactions. By analysing artiĔcially generated 
data, the researchers could identify pioneer species capable of promoting greater biodiversity 
in distinct patches. The Ĕndings highlight the potential of GenAI in advancing ecological research 
by overcoming the limitations of traditional methods and offering new insights into species 
coexistence and community assembly. This approach opens opportunities for deeper exploration 
of biodiversity maintenance in complex ecosystems.

4.2.5. Nuanced Land Use Alterations

Land and climate interact in complex ways through multiple biophysical and biochemical feedback. 
Changes in land use patterns signiĔcantly impact climate dynamics through alterations in carbon 
storage, GHG emissions, and ecosystem resilience. AI-powered analysis of satellite imagery can 
speed up the detection of subtle changes in land use, such as urban expansion, agricultural activities, 
and infrastructure development across different spatial and temporal scales. By comparing these 
datasets, spatial land planning becomes more efĔcient, enhancing the rationality and feasibility of 
planning schemes (Chen et al., 2023). Moreover, aerial imaging analysis to identify physical surface 
materials or human land use highly advance urban land use investigations, providing substantial cost 
and time savings (Chen et al., 2023). AI systems can be leveraged to enhance land classiĔcation by 
making it possible to analyse a vast quantity of data, recognizing patterns and so facilitating decision-
making. Kerins et al. (2020) demonstrated the viability of automated urban land use/land cover 
mapping using ML models and satellite imagery. The researcher developed customized models for 
11 cities in India and used these models to generate comprehensive maps of the corresponding cities 
at multiple points in time. By tracking these changes over time, AI systems aid in understanding the 
impacts of human activities on the environment and in planning sustainable land use practices. 

AlDousari et al. (2022) utilized Support Vector Machines (SVMs) and ArtiĔcial Neural Networks 
(ANNs) to evaluate and predict changes in land use and cover in Kuwait. Nguyen et al. (2021) 
proposed a method for openly accessing existing data and Sentinel-2 satellite imagery through ML 
algorithms, subsequently using land use maps to study the impact of land use changes on sustainable 
development through both local and global indicators. Recent studies underscore the growing role 
of ML in environmental management in land-use classiĔcation. Talukdar et al. (2020) focused on the 
application of ML classiĔers for satellite-based land-use and land-cover classiĔcation, highlighting 
the technology’s ability to enhance accuracy and efĔciency in monitoring changes in terrestrial 
ecosystems. Nonetheless, DL models are highly effective for categorizing land cover or land 
use and can achieve high accuracy in classifying different types of habitations (Alem and Kumar, 
2020). CNNs, which excel in many image classiĔcation tasks, outperform SVMs, RF, and K-Nearest 
Neighbours (KNN) in land cover and land use classiĔcation (Carranza-García et al., 2019).
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A recent empirical study by Guzder-Williams et al. (2023) proposed a ML method to automate the 
production of intra-urban land use maps using Sentinel-2 imagery, which is particularly beneĔcial 
for developing countries, as well as LDCs and SIDS. The novel neural network architecture created 
for this task produced 5-m resolution land use maps for a global sample of 200 cities, spanning 78 
countries and various population sizes. The model reduces computational resources. The main results 
showed high accuracy, with tier-1 and tier-2 achieving 86% and 79% accuracy, respectively, and tiers 
3 and 4 achieving 75% and 71%. Additionally, a roads-only model compared favourably with existing 
datasets, and an Informal Settlement ClassiĔer accurately classiĔed 87% of informal settlements. 
These Ĕndings demonstrate the potential for regularly updated, global intra-urban land use maps at 
a Ĕne resolution to support urban planning and policymaking in resource-limited regions.

Another empirical study by Bindajam et al. (2021) investigated the dynamics of Land Use and Land 
Cover (LULC) changes and their impact on ecosystem services value (ESV) from 1990 to 2028 
in Abha-Khamis, Saudi Arabia. Using SVM classiĔcation, they mapped LULC for 1990–2018 and 
analysed changes using a delta change method and a Markovian transitional probability matrix (TPM). 
The authors found that urban areas increased by 334.4% from 1990 to 2018. The TPM indicated that 
built-up areas were the most stable LULC type, while agricultural land, scrubland, exposed rocks, 
and bodies of water were increasingly converted into urban areas. The study also predicted future 
LULC for 2028 using an artiĔcial neural network-cellular automata model, indicating signiĔcant urban 
expansion at the expense of natural ecosystems.

4.2.6. Monitoring of Carbon Dioxide and Methane Emissions

AI algorithms can also be leveraged to enhance the analysis of vast amounts of data on carbon 
dioxide (CO2) and methane emissions collected by remote sensing technologies. By providing real-
time insights they could be beneĔcial in verifying compliance with emission reduction commitments, 
understanding emission sources, and guiding policy decisions to address climate change effectively. 
Das et al. (2020) proposed a robot designed for deployment in unknown and uneven environments, 
capable of recognizing hazardous gases such as CO2 and liqueĔed petroleum gas with an average 
accuracy of 98%. The robot is equipped with AI to avoid collision obstacles, detect the presence of 
humans, and map the locations of detected gases in real-time using a GPS module. Jualayba et al. 
(2018) designed a monitoring and warning system equipped with sensors for hydrogen, liqueĔed 
petroleum gas, and methane. This system uses colour-coded indicators to display safety statuses 
based on detected gas levels. When a medium level of gas is detected, an exhaust fan is activated. 
At dangerous levels, an alarm buzzer is triggered to alert people about the gas leakage and the need 
to reduce the concentration of the detected gas.

Li et al. (2021) focused on the optimization of internal combustion engine performance using a novel 
approach that couples ANN with GA. Their method, targeting the Direct Dual Fuel StratiĔcation 
(DDFS) strategy, improved the accuracy and stability of performance predictions and was more 
efĔcient than traditional methods. The ANN-GA approach achieved higher fuel efĔciency and lower 
nitrogen oxide emissions while reducing computational time signiĔcantly – by over 75% compared 
to the conventional Computational Fluid Dynamics–Genetic Algorithm (CFD–GA) methods. 
This efĔciency stems from the ANN’s lower computational demands and its ability to manage 
large datasets and variable parameters effectively, highlighting its potential to enhance engine 
performance optimization further. Overall, the ANN-GA method demonstrates superior accuracy, 
efĔciency, expandability, and ĕexibility in optimizing the DDFS strategy.
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ML is increasingly being applied to enhance various CO2 management processes. Indeed, the 
increasing urbanization and industrial activities in metropolitan areas have escalated air pollution 
levels, necessitating advanced air quality prediction and monitoring systems. Schürholz et al. (2020) 
developed a context-aware air quality prediction model using LSTM DNN, integrated with data from 
pollution sources and users’ health proĔles. This model, implemented through the My Air Quality 
Index (MyAQI) tool in Melbourne, demonstrated high precision (90–96%) in predicting air quality, 
displaying its adaptability to individual health conditions. Similarly, Sowmya and Ragiphani (2022) 
proposed an air quality monitoring system leveraging IoT devices and AI tools to manage air pollutants 
effectively. Their system employs sensors to measure harmful gases and utilizes SVM algorithm for 
future air quality predictions. This approach aims to enhance public awareness and enable proactive 
measures to maintain indoor air quality. Almalawi et al. (2022) employed linear regression, support 
vector regression (SVR), and gradient boosting decision trees to develop a model for analysing the 
air quality index using sensor data. Alimissis et al. (2018) utilized ANN and multiple linear regression, 
discovering that ANNs offer computational advantages, especially when the density of air quality 
monitoring networks is limited.

Furthermore, these can contribute to achieving carbon neutrality by reducing GHG emissions and 
mitigating climate change (Jahanger et al., 2023; Sahil et al., 2023). This entails optimizing energy 
use, improving efĔciency in various sectors, and enhancing the deployment of renewable energy 
technologies. AI applications can also help in monitoring and managing carbon footprints in industries, 
cities, and across energy systems, making processes more sustainable and less carbon intensive. 
Additionally, AI systems can predict the behaviour of CO2 in storage sites and monitor these sites 
to ensure the permanent trapping of the gas underground (Kushwaha et al., 2023). Furthermore, 
AI’s ability to develop innovative carbon storage methods, such as creating promising materials for 
sustainable CO2 management, represents another signiĔcant strength (Zhang, Z. et al., 2022).

The main challenges and risks that can be encountered while deploying AI systems for the use cases 
presented in Section 4.2 are:

•	 Data Scarcity: Sparse sensor networks and limited historical data can reduce the accuracy of 
analyses and early warning systems.

•	 Technical and Financial Constraints: High costs for satellite data or advanced computing 
hardware/software can be prohibitive.

•	 Connectivity and Power Reliability: Unreliable internet or electricity limits the real-time 
transfer and processing of EO data.

•	 Capacity Gaps: Shortage of local experts who can interpret data and maintain analytical systems.
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4.3. Climate Simulation and Prediction

Machine learning (ML) can be leveraged to improve climate modelling by enhancing the accuracy of 
weather predictions and understanding climate change impacts. It helps identify patterns in climate 
data, aiding decision-making and policy development. With the vast data from Earth observation 
satellites, AI and ML have become essential for weather forecasting and disaster response. These 
advanced algorithms predict extreme weather events like hurricanes and ĕoods by analysing 
historical and real-time data, highlighting the importance of improved observational techniques. 

4.3.1. Climate Modelling

NASA and IBM Research have collaborated to develop the Prithvi foundational model for weather and 
climate, an AI-powered tool designed to improve weather and climate forecasting at both regional and 
global scales (Barnett, 2024). This model leverages NASA’s extensive datasets, such as MERRA-2, 
and uses AI to detect patterns that can be applied across various weather and climate scenarios. 
The model is part of NASA’s strategy to produce actionable, high-resolution climate projections that 
can inform decision-making for communities, organizations, and policymakers. The Prithvi model 
enhances applications like severe weather detection, localized forecasts, and improving spatial 
resolution in climate models. Developed in collaboration with IBM, Oak Ridge National Laboratory, 
and other partners, the model is designed to scale across regions while maintaining resolution and 
capturing complex atmospheric processes even with incomplete data. The Prithvi model is one of 
several in the Prithvi family that aligns with NASA’s open science principles to democratize access to 
scientiĔc data. It will be available later this year on Hugging Face, a platform for ML and data science. 
This initiative is a step forward in making NASA’s vast Earth observation archives more accessible and 
impactful for the global community.

AI’s capabilities in data processing and collection enhance the accuracy of digital model predictions, 
bridging the gap between these models and real-world conditions, thus leading to more accurate 
forecasts of future outcomes (McGovern et al., 2017). High-quality climate predictions are important 
for understanding the impacts of various GHG emission scenarios and for developing effective 
strategies to mitigate and adapt to climate change (Bonan and Doney, 2018).

AI systems can aid in mitigating climate change by improving the prediction of extreme weather 
events. Weather forecasting is fundamentally a data issue, and as the volume of data analysed by AI 
increases, its accuracy will improve, thereby reducing the impacts of extreme weather events (Chen 
et al., 2023). By analysing vast amounts of historical weather data, AI models can identify patterns 
and anomalies, enabling the development of more accurate forecasting models. These improved 
predictions help in better preparing for and responding to severe weather, ultimately reducing 
potential damage, and enhancing resilience. Indeed, advanced ML and DL techniques are being 
widely applied to identify complex patterns and correlations that may not be immediately apparent 
to human analysts. For example, ML techniques such as RF and SVM can be used to analyse climate 
data to predict weather patterns and extreme events. DL techniques, including CNNs and RNNs, are 
particularly effective in processing large volumes of data and capturing intricate temporal and spatial 
dependencies, which are essential for accurate climate modelling and prediction, thereby improving 
early warning systems. To do so, they process data from various sources, including satellite imagery, 
weather station records, and ocean buoys, to generate comprehensive datasets. Evidence suggests 
that incorporating big data mining and neural networks into the weather prediction workĕow can 
enhance the accuracy of forecasts (Shultz et al., 2021). This revolves around whether DL approaches 
could entirely replace current numerical weather models and data assimilation systems. Integrating 
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AI with numerical climate simulation data can effectively bridge observation data gaps, thereby 
reducing uncertainty and bias in climate predictions (Kadow et al., 2020). Existing weather forecasting 
technologies based on physical and numerical models are often inaccurate and limited, as they do 
not account for variables like global warming, whereas AI technologies can predict long-term climate 
change and short- to medium-term extreme weather events more effectively (Jeon and Kim, 2024).

Lopez-Gomez et al. (2023) focused on improving extreme heat forecasts using neural weather 
models (NWMs) with convolutional architectures. Trained on historical data, these models predicted 
surface temperature anomalies globally for up to 28 days. The study found that using custom loss 
functions tailored to emphasize extremes signiĔcantly improved heatwave prediction accuracy. This 
method also maintained general temperature prediction skills and showed better performance than 
existing models’ overall lead times.

From an empirical perspective, real-world implementations of AI and ML techniques are increasingly 
proving their value in enhancing climate prediction and disaster preparedness. Kagabo et al. (2024) 
developed a precise rainfall forecast model using ML techniques, speciĔcally LSTM networks, to 
predict extreme rainfall events in Rwanda. The study analysed extensive historical rainfall data and 
found that LSTM outperformed other algorithms such as CNNs and GRUs, achieving up to 99.8% 
accuracy. The research emphasized LSTM’s ability to handle data irregularities, signiĔcantly improving 
forecast results and enhancing disaster preparedness and risk mitigation efforts in Rwanda. Similarly, 
AI is being leveraged through a United Nations initiative in Africa to support communities vulnerable 
to climate change in countries such as Burundi, Chad, and Sudan (WEF, 2024). The IKI Project 
employs AI technology to forecast weather patterns, enabling communities and authorities to better 
prepare for and adapt to climate change impacts.

4.3.2. Climate Scenario Simulations and Adaptation Strategies

AI drives signiĔcant improvements in the simulation of climate scenarios, offering robust tools 
for evaluating adaptation strategies and providing decision-makers with actionable insights. By 
harnessing advanced ML algorithms and data analytics, AI systems enhance the accuracy and 
efĔciency of climate models by processing vast amounts of climate data, identifying complex 
patterns, and predicting future climate conditions under various scenarios. These capabilities 
enable researchers to explore potential impacts of different environmental policies and practices, 
thereby aiding in the development of effective and responsive climate action plans. Moreover, AI-
driven simulations facilitate a deeper understanding of regional climate changes, aiding in tailoring 
adaptation measures to local contexts and improve resilience against climate-related risks.

Bonan and Doney (2018) examined recent advancements in ESM that incorporate both terrestrial 
and marine biospheres. These models effectively capture the interactions between the physical and 
biological components of the Earth System (ES), providing valuable insights into climate impacts on 
critical societal issues such as crop yields, wildĔre risks, and water availability. However, despite these 
advances, further research is needed to address model uncertainties and improve the translation of 
observations into abstract model representations. 

In the study by Bowes et al. (2019), LSTM networks and RNNs were used to forecast groundwater 
table responses to storm events in Norfolk, Virginia. Similarly, Jeon et al. (2018) utilized deterministic 
and decision support models to evaluate the performance of BMPs under various climate scenarios, 
reĔning BMPs for future conditions. In urban settings, Skiba et al. (2018) used artiĔcial neural 
networks to model the economic dependence between urban policy and energy efĔciency, offering 
insights for energy-efĔcient urban development.
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Van der Woude et al. (2024) introduced an innovative application of ANN to forecast biocapacity and 
ecological footprint, speciĔcally focusing on forest land indicators in Latin America and the Caribbean 
until 2030, aligning with SDGs. By forecasting these indicators, the study sought to aid in strategic 
planning and decision-making processes that enhance environmental sustainability and support 
climate change adaptation efforts in the region. It serves as a key blueprint for other developing 
regions seeking to strengthen their environmental sustainability and climate mitigation efforts.

While many arid regions are found in less developed countries, where the challenges of water scarcity 
and harsh living conditions can exacerbate developmental issues, it is important to note that arid 
regions can exist in both developing and developed countries. Adikari et al. (2021) evaluated and 
compared the effectiveness of three prominent AI-based approaches – CNNs, LSTM, and Wavelet 
decomposition functions combined with the Wavelet Adaptive Neuro-Fuzzy Inference System 
(WANFIS) – in forecasting ĕoods and droughts in arid and tropical regions. The study measures 
ĕuvial ĕoods by the run-off change in rivers and meteorological droughts using the Standard 
Precipitation Index (SPI). The Ĕndings reveal that the CNN model excels in ĕood forecasting, while 
the WANFIS model shows superior performance in meteorological drought forecasting, irrespective 
of the climatic region. Additionally, the CNN model demonstrates enhanced accuracy in applications 
with multiple input features.

CASE STUDY

FORTIFYING ETHIOPIA’S NATIONAL PARKS: BUILDING RESILIENCE 
AGAINST WILDFIRES AND EXTREME WEATHER

Country: Ethiopia

Entities involved: This project includes a wide range of stakeholders: national 
meteorological and hydrological services in target countries and regions; NGOs 
‘on the ground,’ such as the Red Cross Climate Centre, civil society bodies, civil 
protection authorities, and Ĕrst responder organizations, local communities, 
academic institutions; and research organizations, national and regional 
governments, private sector and dedicated lighthouse stakeholders such as African 
Union, UNEP, UNDP, and ESA. All these stakeholders will beneĔt from MedEWSa’s 
aim of translating complex climate information into actionable knowledge.

Brief description

Natural hazards, such as extreme weather events, are exacerbated by anthropogenic 
climate change. As a result, emergency responses are becoming more protracted, 
expensive, frequent, and stretching limited available resources. This is especially 
apparent in rapidly warming regions. The MedEWSa (Mediterranean and pan-
European Forecast and Early Warning System against natural hazards) project 
addresses these challenges by providing AI-powered novel solutions to ensure timely, 
precise, and actionable impact and Ĕnance forecasting, and early warning systems 
that support the rapid deployment of Ĕrst responders to vulnerable areas. .
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Climate Change Mitigation and/or Adaptation Impacts and Results

Through eight selected pilot sites (areas in Europe, the southern Mediterranean, and 
Africa with a history of natural hazards and extreme events with cascading effects), 
four MedEWSa twin sites will be created: 

1.	 Twin #1: Greece (Attica) – Ethiopia (National Parks): wildĔres and extreme 
weather events (droughts, wind)

2.	 Twin #2: Italy (Venice) – Egypt (Alexandria / Nile Delta): coastal ĕoods and  
storm surges 

3.	 Twin #3: Slovakia (Kosice) – Georgia (Tbilisi): ĕoods and landslides 

4.	 Twin #4: Spain (Catalonia) – Sweden (countrywide): heatwaves, droughts,  
and wildĔres. 

The twins will bridge areas with different climatic/physiographic conditions, yet 
subject to similar hazards, and are well positioned to deliver long-term bidirectional 
knowledge transfer. They will demonstrate the transferability and versatility of the 
tools developed in MedEWSa.

Challenges and Lessons Learned Regarding Development and Implementation

MedEWSa will improve the current Decision Support Data System by: 

•	 Automatizing the process-chain from identiĔcation of active Ĕre to real-time 
simulations, to assessing high risk areas, to producing alerts, and consequently 
optimizing the response time. 

•	 Enhancing the spatiotemporal information by improving the spatial resolution 
especially in the urban-rural interface and developing indicators at the sub-
seasonal to seasonal timescales. 

•	 Advancing models and systems regarding the Ĕre spread capability for large-
scale domains (mixed wind scenarios, simulation time optimization), and the 
forest Ĕre danger rating system.

•	 Standard Operating Procedures and update of the Forest Fire Bulletin to trigger 
early actions (patrolling areas at risk) and rapid deployment of Ĕrst responders 
mitigation measures (prescribed burnings), and preparedness activities.

Table 1 presents an overview of various adaptation strategies facilitated by AI. It details themes, AI 
applications, speciĔc aims, Ĕndings, and contributions of various studies related to AI-driven climate 
adaptation strategies. It includes a wide range of applications and scenarios that highlight the 
potential of AI in climate action. The strategies assessed range from AI-driven agricultural practices 
to advanced disaster response systems. The integration of AI with IoT is known as AIoT.

Table 1 serves as a valuable tool for decision-makers to compare the most viable AI-supported 
adaptation strategies, ensuring informed and strategic planning in mitigating the impacts of climate 
change in LDC and SIDS.
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Table 1: Studies on adaptation strategies using ArtiĔcial Intelligence models 

Theme AI Applications Objectives Key Contributions Citations

Groundwater table 
forecasting

LSTM Networks, 
RNN

To model 
and forecast 
groundwater table 
response to storm 
events in a coastal 
city.

LSTM networks 
outperformed RNNs 
in predictive accuracy; 
effective for real-
time forecasting of 
groundwater table 
levels.

Bowes et al. 
(2019)

Best management 
practices (BMP) 
performance 
in agricultural 
watershed

Deterministic 
Models (SWAT), 
Decision Support 
Models (NSGA-II)

To evaluate 
changes in 
BMPs on total 
phosphorus loads 
under different 
climate change 
scenarios.

SWAT and NSGA-II 
helped reĔne BMPs 
for future climate 
scenarios; highlighted 
the need for adaptive 
BMPs.

Jeon et al. 
(2018)

Climate change 
impact on crop 
yield

Statistical 
Downscaling, GA

To predict climate 
change impacts 
on pearl millet 
yield using genetic 
algorithms.

Demonstrated potential 
for energy-efĔcient 
renovations in urban 
settings using neural 
networks.

Skiba et al. 
(2017)

Flood analytics AIoT, CNN To advance 
ĕood analytics 
using AIoT in 
ĕood situational 
awareness and risk 
assessment.

AIoT prototype 
improved ĕood 
warning and situational 
awareness; successfully 
tested during hurricane-
driven ĕoods.

Samadi 
(2022)

Drought 
forecasting

ANN, ANFIS, SVM To compare ANN, 
ANFIS, and SVM 
models in drought 
forecasting.

SVM model provided 
the highest accuracy 
in drought forecasting 
compared to ANN and 
ANFIS.

Mokhtarzad 
et al. (2017)

Crop yield 
prediction

DNN, 
Semiparametric

To model and 
predict crop yields 
under different 
climate change 
scenarios using ML 
methods.

ML approach showed 
less severe negative 
impacts on corn 
yield than traditional 
methods, especially in 
warmest scenarios.

Crane-
Droesch 
(2018)

Urbanization and 
climate impact

Dynamic 
Simulation, 
Weather Research 
and Forecasting 
Model (WRF)

To investigate the 
impact of future 
urbanization on 
local climate under 
different climate 
change scenarios.

WRF simulations 
indicated signiĔcant 
warming and public 
health risks due to 
urbanization and climate 
change by 2030.

Yeung et al. 
(2020)
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4.3.3. The Role of ArtiĔcial Intelligence in Decreasing Energy 
Consumption in Climate Modelling

SigniĔcant energy savings can be achieved by creating software frameworks and libraries tailored 
to minimize energy consumption in AI. Techniques such as optimized runtime scheduling, sparse 
modelling, ensemble modelling, task parallelization, and resource-aware programming can enhance 
software performance while reducing energy demands. These optimizations not only beneĔt the 
environment but also lead to more cost-effective and scalable AI solutions.

For example, sparse modelling techniques focus on identifying and utilizing the most relevant variables 
and data points, thus simplifying the models. This leads to reduced computational complexity, 
faster simulations, and efĔcient data processing. By focusing only on key variables, sparse models 
require less computational power, thus conserving energy. SimpliĔed models run faster, reducing 
the time and energy needed for simulations. In addition, sparse models streamline data handling, 
minimizing the energy required for data storage and analysis. Given the complexity of climate and its 
varied impacts on populations, Grames and Forister (2024) employed a Bayesian sparse modelling 
approach to select from 80 climate metrics. They applied this method to 19 datasets covering bird, 
insect, and plant populations. For phenological datasets, mean spring temperature often emerged 
as a key climate driver. This climate variable selection approach is valuable for identifying relevant 
climate metrics, especially when there is limited physiological or mechanistic information, and is 
applicable across different studies on population responses to climate. Overall, sparse modelling 
makes climate simulations more efĔcient, leading to signiĔcant energy savings.

Žust et al. (2021) presented an ensemble DL method for forecasting sea levels in the Adriatic Sea, 
which surpasses traditional ocean circulation models in terms of both accuracy and computational 
efĔciency. By using a diverse set of models, researchers can identify and prioritize the most accurate 
and efĔcient ones, reducing the need for extensive runs of less effective models. More accurate 
predictions reduce the need for repeated simulations, saving computational energy.

Enhancing efĔciency in AI research will reduce its carbon footprint and make it more accessible, 
ensuring that DL studies are not limited to those with the largest Ĕnancial resources (Schwartz et 
al., 2020). The AI community has recently started to address the environmental impacts of ML/DL 
programmes. Research highlights the energy consumption and carbon footprint associated with 
training DL, NLP, and GenAI models alike. The concept of Green AI or Computing was proposed to 
encourage more environmentally friendly AI practices (Raman et al., 2024; Schwartz et al., 2020). 
Green AI denotes “AI research that yields novel results while taking into account the computational 
cost, encouraging a reduction in resources spent” (Schwartz et al., 2020). Researchers are focused 
on optimizing algorithms, hardware, and data centre operations to lower energy consumption and 
minimize the carbon footprint of AI systems (Wheeldon et al., 2020).

The recent comprehensive study by Raman et al. (2024) focused on Green AI, utilizing thematic 
analysis and BERTopic modelling to explore this Ĕeld. The study identiĔed signiĔcant advancements 
in Green AI, particularly in the areas of energy optimization and sustainable computational 
practices. It highlighted three main thematic clusters: responsible AI for sustainable development, 
advancements in Green AI for energy optimization, and big data-driven computational advances. 
Among these, the study emphasized the importance of sustainable neural computing and 
cognitive AI innovation, showcasing how AI technologies can be optimized for energy efĔciency 
and reduced environmental impact. These Ĕndings underscore the critical role of Green AI in 
promoting environmental sustainability within the AI research community, providing valuable 
insights for future research and policymaking aimed at integrating sustainability into AI research 
and development, including climate modelling.
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Furthermore, the AI community has developed various tools to evaluate the energy consumption 
of ML models. For example, Anthony et al. (2020) highlighted the energy consumption and carbon 
footprint associated with training NLP models. Henderson et al. (2020) underscored the need for 
systematic reporting of the energy and carbon footprints of ML practices. The authors introduced a 
framework that facilitates this reporting by providing a simple interface for tracking real-time energy 
consumption and carbon emissions, along with generating standardized online appendices. This 
framework is utilized to create a leaderboard for energy-efĔcient reinforcement learning algorithms, 
aiming to incentivize responsible research in this Ĕeld and serve as a model for other areas of ML. 
Based on case studies using this framework, the authors propose strategies for mitigating carbon 
emissions and reducing energy consumption. Lacoste et al. (2019) proposed methods to quantify 
the carbon emissions of ML, while Lannelongue et al. (2021) introduced the concept of Green 
Algorithms to measure the carbon emissions of computational tasks. These impacts are primarily 
expressed in terms of energy consumption and associated greenhouse gas (GHG) emissions.

The main challenges and risks that can be encountered while deploying AI systems for the use cases 
presented in Section 4.3 are:

•	 Model Bias: Models trained on global datasets may not capture local climate nuances, leading to 
inaccurate regional forecasts.

•	 Computational Demands: Running complex climate models often requires high-performance 
computing infrastructure, which can be lacking.

•	 Lack of Local Data: InsufĔcient regional data inputs, such as rainfall patterns or sea-level 
measurements, reduce model accuracy.

•	 Dependence on External Providers: Reliance on foreign institutions for modelling expertise can 
result in limited local capacity-building.

4.4. Resource Management

Effective resource management is important for sustainable development and directly impacts 
climate change mitigation and adaptation efforts. AI-enabled interventions have shown signiĔcant 
promise in optimizing the management and preservation of natural resources. AI systems can be 
leveraged to improve resource management practices across various domains and contribute 
to broader climate resilience strategies by integrating advanced data analytics, ML, and real- 
time monitoring. 

4.4.1. ArtiĔcial Intelligence Interventions in Fisheries Management and 
Marine Life Preservation

Human activities pose considerable threats to marine ecosystems, making effective management 
and conservation crucial. AI technologies have advanced the ability to monitor and manage Ĕsh 
stocks and Marine Protected Areas (MPAs). The application of AI and automation can improve 
marine conservation efforts, particularly in safeguarding marine ecosystems and deĔning MPAs 
(Şeyma, 2023). ML algorithms analyse data from satellite imagery, sonar, and other remote 
sensing technologies to track Ĕsh populations and their movements. This allows for more accurate 
assessments of Ĕsh stock levels, which is key to sustainable Ĕsheries management. Marine life 
preservation would also beneĔt blue carbon strategy in LDCs and SIDS that utilizes coastal 
ecosystems for carbon sequestration.
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AI research has improved marine resource management, encompassing water pollution monitoring, 
pollutant tracing, pollution reduction and prevention strategies, acidiĔcation mitigation, and habitat 
and species protection through various AI models and techniques (Bibri et al., 2023). These include 
ML, DL with CNNs and RNNs, GA, ML-based Species Distribution Models (SDMs), and time series 
forecasting, in addition to Autonomous Underwater Vehicles (AUVs), and Remotely Operated 
Vehicles (ROVs), nano satellites, drones, and robots (Bakker, 2022; Şeyma, 2023). For example, 
ML techniques can be employed to analyse underwater photographs, enabling the identiĔcation 
and categorization of marine species (Moniruzzaman et al., 2017). Also, Watanabe et al. (2019) 
determined that an autonomous monitoring system utilizing optimally controlled robots is necessary. 
They employed a DL algorithm known as YOLOv3 to detect underwater sea life and ĕoating debris 
on the ocean surface, achieving sensitivities of 69.5% and 77.2%, respectively.

AI techniques can be integrated into decision support systems (DSS) to enhance decision-making. 
These rely on various data sources, analytical models, and user interfaces to help users make informed 
decisions in the context of environmental sustainability and climate change. This includes assessing 
ecosystem services, species conservation, water chemistry and quality, and hydro-meteorological 
forecasting (Nishant et al., 2020). When DSS include ML, FL, and NLP, they can provide more 
advanced and intelligent support. Automating and leveraging AI enhances the management of 
maritime resources by developing AI-based decision support systems that effectively manage 
Ĕsheries and improve the establishment of MPAs (Şeyma, 2023). Automation and AI have the 
potential to transform marine research by introducing new perspectives and enhancing data 
collection and processing. 

Villon et al. (2018) developed and evaluated a CNN for identifying Ĕsh species in underwater images, 
comparing its performance to human abilities in terms of speed and accuracy. Using a diverse 
dataset of 900,000 images, the CNN was trained to recognize 20 different Ĕsh species, including 
whole Ĕsh bodies, partial Ĕsh bodies, and environmental elements such as reef bottoms or water. The 
CNN’s accuracy was tested against human performance on a test set of 1197 images representing 
nine species. The results showed that the CNN achieved a correct identiĔcation rate of 94.9%, 
higher than the human accuracy rate of 89.3%. The CNN was particularly effective at identifying Ĕsh 
partially obscured by corals or other Ĕsh, and in processing smaller or blurrier images, while humans 
were better at identifying Ĕsh in unusual positions, such as twisted bodies. It is notable that efĔcient 
monitoring of marine biodiversity is instrumental to understanding and mitigating the impacts of 
climate change on marine ecosystems, as it helps track species distribution shifts, detect changes 
in population dynamics, and assess the health of marine habitats affected by warming oceans, 
acidiĔcation, and other climate-related changes.

Illegal Ĕshing is closely related to climate change in several signiĔcant ways. Climate change can lead 
to shifts in ocean temperatures, currents, and ecosystems, causing Ĕsh populations to move to new 
areas, which can result in overĔshing in some regions and underĔshing in others, driving some Ĕshers 
to engage in illegal Ĕshing practices to maintain their catch levels. Moreover, climate change impacts, 
such as ocean acidiĔcation and changes in sea temperature, can stress Ĕsh populations and reduce 
their numbers, leading Ĕshers to resort to illegal methods to compensate for declining stocks. Since 
the onset of the Industrial Revolution, the acidity of surface ocean waters has risen by approximately 
30% (NASA, 2024). This increase is attributed to higher CO2 emissions from human activities, 
which lead to its greater absorption by the ocean. Moreover, economic pressures play a role, as 
communities reliant on Ĕshing for their livelihoods may face increased economic strain due to the 
effects of climate change on Ĕsh availability and distribution, prompting some to turn to illegal Ĕshing 
as a means of survival. Furthermore, climate change can damage critical marine habitats like coral 
reefs and mangroves, which are essential for the life cycles of many Ĕsh species. The destruction 
of these habitats forces Ĕsh to migrate, creating new challenges for legal and sustainable Ĕshing 
practices and potentially increasing illegal Ĕshing activities.
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CASE STUDY

AI FOR REAL-TIME CORAL REEF MONITORING AND 
CONSERVATION

Country: Fiji, the Maldives, Palau, Solomon Islands, and Vanuatu
Entities involved: Australian Institute of Marine Science 

Brief description

ReefCloud’s AI utilizes advanced algorithms trained on the Australian Institute of Marine 
Science (AIMS)’s Long-term Monitoring Programme data to identify and classify coral 
reefs from images automatically. This allows for rapid and accurate assessment of reef 
health, standardizing collected data with 80–90% accuracy and analysing coral reef 
composition at a speed 700 times faster than traditional manual methods. ReefCloud 
employs a cloud-based platform that enables users to upload, access, and share data 
from anywhere in the world. This facilitates collaboration among researchers and 
managers and supports the processing of large image datasets. ReefCloud Analytics 
processes millions of quality-controlled point annotations to identify trends and 
patterns in coral reef health data and offer the possibility to visualize reefs in 3D. This 
informs conservation and management decisions by providing detailed insights into 
reef composition and condition over time.

Climate Change Mitigation and/or Adaptation Impacts and Results

Improved Monitoring: ReefCloud provides a rapid and accurate way to assess coral 
reef health, helping to track changes over time and identify areas that need protection.

Enhanced Management: The system provides managers with the information needed 
to make informed decisions about conservation and restoration efforts.

Resource Optimization: By analysing coral reef composition with 80–90% accuracy 
and 700 times faster than traditional manual assessment, ReefCloud saves weeks to 
months of labour, freeing up precious reef management resources.

Challenges and Lessons Learned Regarding Development and Implementation

For the successful deployment of AI monitoring systems in a global community, it is 
important to ensure a user-friendly platform and standardized data collection.
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Appana et al. (2022) focused on combating IUU Ĕshing by developing an edge technology-based 
AI system for MPAs. The system utilizes low-cost, solar-powered edge computing devices on buoys 
equipped with video cameras and processors to detect illegal Ĕshing through AI-based image 
recognition. The results showed that the system effectively detects and monitors vessels engaged 
in illegal activities, reducing overĔshing. The edge devices process data locally and a stealth drone 
collects and reports the data, providing continuous 24/7 surveillance. This technology offers real-
time alerts of illegal Ĕshing activities to governments and NGOs, supporting the protection of MPAs.

Cheng et al. (2023) investigated the use of AI in analysing Ĕshing vessel behaviour to enhance 
management practices, prevent illegal Ĕshing, identify Ĕshing grounds, and assess the impact of 
harvesting on Ĕshery resources. With the development of advanced vessel-tracking systems, a 
wealth of real-time data on Ĕshing vessels is now available, allowing for detailed analysis of their 
behaviour. To effectively handle this large volume of data, AI algorithms are increasingly applied. 
Various sources for studying Ĕshing vessel behaviour are covered, along with AI methods used to 
monitor and extract behavioural patterns, and research on the physical, ecological, and social factors 
affecting these behaviours is synthesized. 

Bakker (2022) examined an innovative approach to digitally driven earth system governance in marine 
biodiversity conservation: ArtiĔcial Intelligence-enabled, mobile marine protected areas (MMPAs). 
This form of ocean governance operates in real-time and can potentially cover vast oceanic areas, 
utilizing digital hardware that gathers data from various sources such as nano-satellites, drones, 
environmental sensor networks, digital bioacoustics, marine tags, and deep-sea UAVs. The collected 
data are then analysed using ML algorithms, CV, and ecological informatics techniques. Scientists 
and regulators are increasingly advocating for the use of these AI-powered systems in global ocean 
management due to their ability to provide adaptive, real-time responses to environmental changes 
and disturbances. By enhancing the monitoring and protection of marine environments, MMPAs 
can detect and respond to illegal activities and overĔshing in real-time, ensuring more effective 
enforcement of conservation regulations. 

Samaei and Hassanabad (2024) focused on the intersection of marine industries, seas, and AI within 
the framework of sustainable development. Key Ĕndings include the successful implementation of 
AI for autonomous navigation, predictive maintenance, marine trafĔc management, environmental 
monitoring, intelligent port operations, and smart aquaculture. AI technologies, such as reinforcement 
learning, ML, neural networks, GA, and IoT sensors, have signiĔcantly improved efĔciency, accuracy, 
and 24/7 operational capabilities. 

4.4.2. ArtiĔcial Intelligence Interventions in Farming Management

AI is revolutionizing farming management by providing data-driven insights and adaptive strategies 
that enhance agricultural productivity and sustainability, while enabling farmers to navigate changing 
climate conditions more effectively.

AI and applied ML techniques are being leveraged to enhance agricultural practices. By integrating 
advanced algorithms and real-time data analysis, AI tools empower farmers with critical information 
to make informed decisions. This technological advancement is signiĔcant for addressing the 
challenges posed by climate change and the increasing demand for food production. 
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Nath et al. (2024) focused on the innovative potential of AI in the agricultural and food processing 
industries, emphasizing its implications for sustainability and global food security. They 
highlighted the increasing integration of AI technologies, such as ML, DL, and neural networks, in 
these sectors to enhance various farming processes, including crop yield optimization, herbicide 
use, weed identiĔcation, and fruit harvesting. The study concluded that AI boosts the efĔciency, 
sustainability, and productivity of agri-food systems and underscored the need to expand its 
application across the agri-food supply chain, thereby contributing to global food security and 
addressing key agricultural challenges. 

Precision farming technologies use AI to analyse data from various sources, such as satellite imagery, 
drones, and sensors to monitor crop health, soil conditions, pest infestations, optimal planting times, 
air quality, and weather patterns. These data-driven approaches and actionable insights enable 
precise resource management, leading to increased yields and reduced environmental impact. AI-
driven precision agriculture, combined with genome analysis and editing techniques, can produce 
crops that are well-suited to the land and optimize plant production (Joseph et al., 2021). 

Rustia et al. (2022) addressed the main bottleneck in Integrated Pest Management (IPM), which 
is the lack of reliable and immediate crop damage data. To tackle this issue, they developed an 
Intelligent and Integrated Pest and Disease Management (I2PDM) system. This AIoT-based system 
uses edge computing devices to automatically detect and recognize major greenhouse insect pests, 
such as thrips and whiteĕies, and to measure environmental conditions like temperature, humidity, 
and light intensity. The results showed that the system signiĔcantly supported farm managers in IPM-
related tasks, leading to a substantial yearly reduction in insect pest counts, with decreases as high 
as 50.7%. The study concluded that the I2PDM system represents a signiĔcant advancement in IPM 
through automated, long-term data collection and analysis. This innovative approach opens up new 
possibilities for sustainable and data-driven IPM, encouraging collaboration among farm managers, 
researchers, experts, and industries to implement more effective pest management practices.

Dheeraj et al. (2020) explored the role of AI and IoT technologies in mitigating climate change by 
creating environmentally friendly and high-performing systems. By integrating IoT and AI, data 
collected from Ĕeld sensors are analysed to monitor various environmental factors such as soil 
moisture, weather conditions, fertilization levels, soil composition, temperature, and irrigation 
systems. The results indicate that this integration helps increase crop production, leading to higher 
incomes for farmers.

Among the climate change challenges related to agriculture are altered growing seasons, increased 
pest and disease pressures, and extreme weather events. AI systems can help farmers develop 
adaptive strategies to navigate these challenges. Precision agriculture utilizes these systems to 
identify pests, accurately and rapidly detect crop diseases, predict yields, and optimize fertilizer and 
pesticide use using ML, DL, and CV (Chen et al., 2023). Herbicides or other chemical residues can be 
left on plant products due to chemical spray transfer, often caused by wind blowing tiny droplets of 
spray solution onto nearby crops or Ĕelds (Creech, 2015). Precision spraying technology addresses 
this issue by drastically reducing the quantity of herbicide required and applying it only where weeds 
are present. This targeted application can signiĔcantly lessen the environmental impact, lower costs, 
reduce crop damage, and minimize excessive chemical residues (Balafoutis et al., 2017), thereby 
adapting agricultural practices to changing environmental conditions.

Additionally, Swaminathan et al. (2023) reported that robots equipped with AI and CV for monitoring 
and spraying weeds could reduce chemical usage on crops by 80% and cut herbicide costs by 90%. 
In precision fertilization, a fertilizer application model calculates the required fertilizer input, which is 
then applied using a variable rate applicator after assessing the soil’s nutrient levels and dividing the 
Ĕeld into a grid (Elbeltagi et al., 2022).
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ML models can predict the impacts of climate change on crop yields and recommend adaptive 
measures, such as changing planting dates, selecting resilient crop varieties, and implementing 
water-saving technologies. Du et al. (2021) developed a high-efĔciency water and fertilizer control 
system for cotton cultivation that uses soil conductivity thresholds to optimize the use of water and 
fertilizer. This system, which monitors soil conductivity and moisture content, resulted in a 10.89% 
reduction in resource usage. Moreover, accurately calculating reference evapotranspiration is 
important for meeting crop water needs, providing essential data for effective water management 
and sustainable agriculture. 

Elahi et al. (2019) estimated the target values of agrochemicals for rice farms while maintaining 
current yield levels in the HaĔzabad and Sheikhupura districts of Pakistan. The authors found that 
pesticide inputs could be reduced by 52.6% and pure nitrogen fertilizer inputs by 43.6%, leading to a 
favourable and signiĔcant impact. Putra et al. (2020) modelled the storage and release of nutrients 
through fertilizer application to simulate the availability and loss of nutrients in oil palm cultivation. 
This approach helps determine and maintain the nutrient balance at speciĔc sites by adjusting 
fertilizer application accordingly. 

4.4.3. ArtiĔcial Intelligence for Water Resource Management

AI applications in water resource optimization have garnered signiĔcant research attention in recent 
years. These applications aim to enhance the conservation and efĔcient use of water resources. AI 
systems play a role in optimizing water resource management. AI and ML algorithms analyse data 
from sensors, satellite imagery, and weather forecasts to predict water demand and supply, optimize 
irrigation schedules, and detect leaks in water distribution systems. These technologies help in 
conserving water, improving water use efĔciency, and ensuring the sustainable management of 
water resources. 

Among the major AI models used in water resource management are ANNs, SVM, decision trees 
(especially random forests), multiple regression, autoregressive moving average models (ARMA), 
and spline regression, with genetic algorithms (GA) also being widely utilized (Bibri, 2024; Bibri et al., 
2023; Nishant et al., 2020). Widely used ML models often combine ANN, including adaptive neuro-
fuzzy inference systems (ANFIS). For instance, ANNs and ANFIS can be used to predict streamĕow 
and analyse water quality parameters. In the study by Rashid and Kumari (2023), these two techniques 
were utilized to predict velocity and pressure in the Gadhra (DMA-5) water distribution network in 
Jharkhand, India. For predicting velocity, ĕow rate and diameter were used as independent variables, 
while for predicting pressure, elevation and demand were the independent variables. The dataset was 
split with 80% used for training, testing, and validation, and 20% for evaluation. Sensitivity analysis 
was conducted with ANN-LM to explore the relationships between variables.

Sharma et al. (2024) focused on modelling the stage–discharge relationship, which is important for 
accurate discharge estimation needed in reservoir operations, hydraulic structure design, and ĕood 
and drought control. It compared a conventional stage–discharge rating curve (SRC) method with 
three data-driven techniques: ANN, ANFIS, and SVM. The results showed that the ANFIS model 
using the Gaussian membership function outperformed the SRC, ANN, and SVM models. Given the 
importance of precise groundwater level estimation for crop cultivation, daily life, and sustainable 
growth, Jithendra and Basha (2023) developed prediction models using hybrid techniques that 
integrate ANN, ANFIS, and an Improved Reptile Search Algorithm (IRSA) to help prevent resource 
depletion. IRSA was used to optimize the parameters of ANN and ANFIS, enhancing the forecasting 
models’ effectiveness. Comparisons between ANN-IRSA, ANFIS-IRSA, traditional ANN, and ANFIS 
on the same datasets showed that the ANFIS-IRSA model performed best.
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Adaptive intelligent dynamic water resource planning, a streamlined approach that utilizes AI 
technology, enhances water efĔciency, and sustains the water environment in urban areas (Xiang et 
al., 2021). Liu et al. (2019) improved the stability and reliability of the projection tracking water quality 
evaluation model by adding dynamic inertia weights to the moth ĕame algorithm, thereby enhancing 
regional water environment evaluation accuracy. Afzaal et al. (2020) employed RNNs and LSTM to 
address the dynamic inputs of climate change in Prince Edward Island, Canada. 

CASE STUDY

AI ARTIFICIAL INTELLIGENCE FOR WATER MANAGEMENT  
IN THE RED RIVER DELTA

Country: Viet Nam 
Entities Involved: Brescia University (Italy) and Thuyloi University (Viet Nam), 
supported by Climate Change AI

Brief description

This project focuses on the use of AI techniques for the water management of the 
Red River Delta area in Viet Nam (Figure 4). In this area, the complex river network is 
characterized by the presence of a system of dams designed to address sometimes 
conĕicting objectives: (i) generating hydropower to foster the local economy and 
social activities, (ii) regulating the ĕood events occurring downstream during the rainy 
season, (iii) supplying water for agriculture in the low ĕow season and (iv) contrasting 
Sea Water Intrusion (SWI) in the estuaries of the rivers. Constraints include the need to 
ensure the dam’s safety by not exceeding a maximum or minimum water level.

Figure 4: The Red River Delta area in Viet Nam

With the aim of developing adaptive water management systems, this work studies 
the feasibility of using AI techniques to identify policies for the current and projected 
climatic conditions. In particular, our project focuses on optimizing water supply for 
agriculture and energy production in the low-ĕow season while contrasting SWI in 
the Red River Delta. We aim to use optimization methods like Genetic Algorithms 
(GAs) and AI planning algorithms to automatically generate control policies for water 
resource management of the Hoa Binh reservoir, the Ĕrst hydroelectric reservoir on 
the Da River while considering different constraints.
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Climate Change Mitigation and/or Adaptation Impacts

The project aims to enhance water management systems to address climate change, 
urbanization, and population growth, focusing on both mitigation and adaptation. 
EfĔcient water management will reduce water stress and ensure a reliable supply for 
agriculture, industry, and domestic use, which is crucial as climate change exacerbates 
scarcity. It will also mitigate sea-level rise effects and saline intrusion into freshwater 
sources by controlling water releases and storage, maintaining balance in river deltas 
and estuaries. Additionally, the project enhances renewable energy production by 
optimizing water usage for hydropower, reducing reliance on fossil fuels, and lowering 
carbon emissions. It supports local economies by ensuring a steady water supply for 
various uses, fostering social development, and reducing vulnerability to climate-
induced economic disruptions. 

Challenges and Lessons Learned Regarding Development and Implementation

The process of data analysis is challenging due to an absence of homogeneity in 
the collected data, such as variations in recording time intervals and the presence of 
missing data on certain days. Consequently, prior to utilization, a data screening and 
correction procedure must be executed to rectify any inconsistencies or irregularities. 
Moreover, the complexity of the irrigation system in the Red River Delta, consisting 
of approximately 30 irrigation areas, requires precise determination of water 
requirements. This necessitates a dedicated research effort to ensure accuracy and 
reliability, which is beyond the scope of this research. In this context, the demand 
indicated in Decision 50, issued by the Vietnamese government in 2023 was selected as 
the reference framework. This strategic choice facilitates alignment with authoritative 
mandates and provides a robust foundation for subsequent analyses. The available 
models of the Red River Delta are data-driven approximations of its dynamics rather 
than precise descriptions of the system’s physical evolution, increasing the reliance on 
good-quality data.

The main challenges and risks that can be encountered while deploying the AI use cases presented 
in Section 4.4 are:

•	 Data Integration Challenges: Resource data (e.g., for agriculture or Ĕsheries) may be 
fragmented or outdated, impairing AI’s effectiveness.

•	 Inadequate Monitoring Infrastructure: Limited deployment of sensors or monitoring 
equipment can hamper real-time resource tracking.

•	 Socio-economic Inequities: If AI tools are only accessible to a privileged few (e.g., large-scale 
commercial entities), smallholder farmers or local Ĕshers may be sidelined.

•	 Regulatory and Policy Gaps: Weak governance structures can lead to mismanagement or 
uneven distribution of beneĔts (e.g., water allocation).
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4.5. Energy Management

Energy management is a critical component in the Ĕght against climate change, where optimizing the 
generation, operation, distribution, transmission, and consumption of energy can lead to substantial 
reductions in greenhouse gas (GHG) emissions. Enhancing energy efĔciency, developing renewable 
energy, and increasing its contribution to decarbonizing each of its end-users are crucial strategies 
for tackling or mitigating climate change.

4.5.1. Real-time Energy Management

AI algorithms, such as neural networks and ML, are used to analyse vast amounts of data from smart 
grids, allowing for real-time adjustments that enhance energy efĔciency (Farghali et al., 2023). 
Predictive analytics help in forecasting energy demand, reducing wastage, and balancing supply and 
demand dynamically. As climate change challenges intensify, AI is increasingly recognized as one of 
the key solutions to mitigate these challenges. AI can be seamlessly integrated with IoT and renewable 
energy systems, enhancing energy supply, optimizing decision-making, and enabling autonomous 
control, thereby acting as a signiĔcant driving force in the energy sector (Bibri, 2024; Rane et al., 
2024a). Indeed, AI has the potential to innovate the energy sector, presenting new opportunities for 
improving energy efĔciency and achieving sustainable development objectives (Baysan et al., 2019; 
Farghali et al., 2023).

AI systems can be leveraged to enhance the distribution and transmission of energy by optimizing the 
grid planning for reducing losses. AI techniques can be applied to develop smart grid systems that 
adapt to changes in energy demand and supply in real-time, ensuring efĔcient energy distribution 
and minimizing transmission losses. In the energy sector, the integration of AI can enhance energy 
utilization efĔciency by predicting energy demand, optimizing production and consumption, and 
enabling intelligent control systems (Chen et al., 2023; Shoaei et al., 2024). These advancements 
lead to reduced energy costs, decreased environmental pollution, and promote sustainable 
development (Ahmad et al., 2021; Khalilpourazari et al., 2021; Lee and Yoo, 2021). For example, AI 
applications in smart meters and home automation systems provide consumers with insights into 
their energy usage patterns, helping them reduce consumption and lower energy bills. AI-driven 
demand response systems can shift or reduce power usage during peak times, thus ĕattening the 
demand curve and avoiding strain on the grid. Moreover, AI systems can provide early identiĔcation 
of maintenance needs for grid elements and generating facilities, and propose optimized preventive 
maintenance road maps, resulting in reduced equipment downtime and favouring reliability.

Furthermore, Ding et al. (2024) explored the potential of AI to enhance energy efĔciency and 
reduce carbon emissions in medium-sized ofĔce buildings in the United States. They developed 
a methodology to assess emissions reductions by focusing on equipment, occupancy inĕuence, 
control and operation, and design and construction. By evaluating six scenarios across different 
climate zones, the researchers found that AI systems could reduce energy consumption and 
carbon emissions by 8% to 19% by 2050. Moreover, they can lower cost premiums, increasing the 
adoption of high energy efĔciency and net zero buildings. When combined with supportive energy 
policies and low-carbon power generation, they could potentially achieve a 40% reduction in energy 
consumption and a 90% reduction in carbon emissions compared to business-as-usual scenarios 
by 2050. This study highlights AI’s signiĔcant potential to transform energy efĔciency and carbon 
emission reductions in commercial buildings.



47

AI integrated with IoT have been increasingly utilized to improve energy efĔciency, optimize energy 
management systems, and support Sustainable Development Goals (SDGs), especially SDG 7 
and hence SDG 13. The examined studies in Table 2 – empirical studies, experimental studies, 
case studies, and reviews – focus on these applications, detailing their themes, objectives, AIoT 
techniques applied, application areas, and key Ĕndings. Table 2 provides a comprehensive overview 
and comparative analysis, offering insights into the diverse ways AIoT are being leveraged to tackle 
energy challenges and transform energy management practices.

Table 2: ArtiĔcial Intelligence applications in energy management

Research 

Description

Objectives AI or AIoT 

Techniques

Application 

Areas

Key Findings References

AI in smart 
power system 
transient 
stability

To review AI 
applications 
in addressing 
transient 
stability issues 
in smart power 
grids.

ML, DL, Big 
Data

Smart power 
grids

AI improves 
transient stability 
assessment and 
control in smart 
grids, enhancing 
reliability and 
efĔciency.

Guo et al. 
(2023)

AI and digital 
technologies 
in the energy 
sector

To analyse 
the adoption 
and impact of 
AI and digital 
technologies 
in the energy 
sector.

AI, Big Data, 
IoT, Robotics, 
Blockchain

Energy sector AI systems 
enhance job 
skills, Ĕrm 
performance, 
and energy 
sector 
innovation.

Lyu and Liu 
(2021)

IoT and AI 
for energy 
efĔciency

To develop 
a system 
architecture 
for centralized 
energy 
efĔciency using 
AI and IoT.

IoT, ML Energy 
management 
systems

AI and IoT 
technologies 
improve 
scalability, 
automation, 
and efĔciency 
in energy 
management, 
beneĔcial for 
smart industry 
and homes.

Tomazzoli et 
al. (2020)

AI in smart 
buildings 
for energy 
management

To review AI 
applications in 
smart buildings 
for enhancing 
energy 
efĔciency.

ANN, ML, Big 
Data

Smart 
buildings

AI systems 
reduce energy 
consumption, 
improve control, 
reliability and 
automation in 
smart buildings, 
enhancing 
efĔciency.

Farzaneh et 
al. (2021)
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Table 2 (continued): ArtiĔcial Intelligence applications in energy management

Research 

Description

Objectives AI or AIoT 

Techniques

Application 

Areas

Key Findings References

AI for thermal 
comfort 
prediction 
and control in 
buildings

To evaluate 
AI methods 
for optimizing 
thermal comfort 
and energy use 
in buildings.

ML Building 
energy 
management

AI systems 
optimize energy 
use while 
maintaining 
occupant 
thermal comfort, 
improving energy 
efĔciency in 
buildings.

Ngarambe et 
al. (2020)

AI in 
prediction, 
optimization, 
and control 
of thermal 
energy 
storage 
systems

To assess AI 
techniques 
in optimizing 
thermal 
energy storage 
systems.

Particle Swarm 
Optimization 
PSO, ANN, 
SVM, ANFIS

Thermal 
energy 
storage

AI systems 
improve design 
and performance 
of thermal 
energy storage 
systems, 
demonstrating 
signiĔcant 
accuracy.

Olabi et al. 
(2023)

Applicability 
of ML 
techniques 
in agriculture 
and energy 
sectors

To explore ML 
techniques’ 
applicability 
in smart 
agriculture 
and energy 
production.

ML algorithms Agriculture, 
energy

ML enhances 
predictive 
accuracy and 
efĔciency in 
smart farming 
and energy 
production, 
addressing key 
challenges.

Arumugam et 
al. (2022)

AI and ML 
for energy 
consumption 
and 
production 
in emerging 
markets

To review AI and 
ML applications 
in optimizing 
energy 
consumption 
and production 
in emerging 
markets.

AI, ML Emerging 
energy 
markets

AI and ML 
techniques 
optimize energy 
consumption, 
production, 
and grid 
management, 
addressing issues 
in developing 
countries.

Mhlanga 
(2023)
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CASE STUDY

OPTIMIZING HOUSEHOLD ENERGY CONSUMPTION: INDIA’S TATA 
POWER EZ HOME

Country: India

Entities involved: Tata Power (Indian company) 

Brief description

Electricity distributors face the complex challenge of balancing supply and demand 
across millions of households, each with unique consumption patterns. As India 
integrates more renewable energy sources into its grid, this balancing act becomes 
even more intricate. The variability of solar and wind power generation, combined with 
the diverse and often unpredictable nature of household energy consumption, creates 
a signiĔcant challenge for energy management. This challenge is further complicated 
by the fact that household energy consumption is largely driven by individual behaviours 
and routines. Factors such as weather conditions, work schedules, holidays, and 
even major events can signiĔcantly inĕuence electricity usage. Traditional methods 
of forecasting and managing household energy consumption often fail to capture 
these nuances, leading to inefĔciencies and potential grid instability. Recognizing 
these challenges, Tata Power, one of India’s largest integrated power companies, 
has developed the EZ Home platform. This AI-powered solution leverages machine 
learning and Internet of Things (IoT) technologies to optimize household energy 
consumption, control appliances, and enhance overall energy efĔciency. By integrating 
smart home automation features, EZ Home aims to provide a seamless and energy-
efĔcient living experience. EZ Home uses IoT technology to allow users to operate, 
schedule, and monitor household appliances, including lighting, fans, air conditioners, 
and more, via smartphone applications or voice commands. AI-powered Motion 
Sensors: The system includes AI-powered Passive Infrared (PIR) Motion Sensors that 
can control attached appliances based on human presence. .

Climate Change Mitigation and/or Adaptation Impacts and Results

Reduced Energy Waste: By optimizing energy consumption and distribution, EZ Home 
reduces the need for overproduction and minimizes energy loss during transmission 
and distribution. 

Enhanced Energy EfĔciency: The platform promotes energy-saving practices and 
technologies, contributing to overall energy efĔciency at the household level.

Lowered Carbon Footprint: By reducing energy waste and promoting efĔcient energy 
use, EZ Home directly contributes to lowering greenhouse gas emissions at the 
household level. Energy Management Analytics: EZ Home provides end-users with 
data on their actual and predicted consumption at various levels (product, room, and 
home), helping them manage their energy use more effectively. 

Seamless Integration: The EZ Home devices are designed for easy installation and 
offer backwards compatibility, allowing for integration into existing home setups 
without extensive rewiring.
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4.5.2. ArtiĔcial Intelligence for the EfĔcient Use and Deployment of 
Renewable Energy Technologies

AI models can be used to accurately predict the output of renewable energy sources (El-Abbadi 
and Elyoubi, 2023; Rane et al., 2024), such as solar and wind, thereby enhancing energy production 
and handling transmission and distribution congestions. Accurate prediction helps in integrating 
renewable energy into the grid more effectively, by reducing the needs of spinning reserves in the 
power system and optimizing the connection to back-up generators just in time, ensuring a stable 
supply and reducing reliance on fossil fuels. The integration of AI can optimize the performance 
of renewable energy systems by adjusting parameters in real time. For example, reactive power 
contribution from renewable generators can anticipate consumption patterns towards guarantee 
appropriate voltage levels without further equipment or contribution of non-renewable generators.

In addition, the integration of AIoT in the renewable energy sector is driving signiĔcant advancements 
in how sustainable energy is generated, managed, and optimized, thus becoming increasingly crucial 
for advancing sustainable energy solutions. Rane et al. (2024) explored the synergy between AI, 
IoT, and edge computing in renewable energy applications. IoT devices facilitate real-time data 
collection, which, when combined with AI and ML, enhances system responsiveness and efĔciency. 
Data connections and IoT sensors are integral to distributed energy resources (DERs), generating 
extensive data that can enhance system efĔciency and add value beyond simple monitoring thanks 
to AI techniques (El Himer et al., 2022). By integrating AI with IoT, new opportunities arise in the 
energy sector for optimizing performance and creating additional beneĔts.

The examined studies in Table 3 – empirical studies, experimental studies, case studies, and reviews 
– focus on AI applications in renewable energy, examining their themes, objectives, AI or AIoT 
techniques applied, application areas, and key Ĕndings. These studies cover various aspects, from 
energy generation prediction and storage optimization to the integration of renewable sources into 
power grids. Table 3 presents a detailed overview and comparative analysis to understand the impact 
and potential of AI and AIoT in enhancing the efĔciency, optimization, and reliability of renewable 
energy systems. 
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Table 3: ArtiĔcial Intelligence and ArtiĔcial Intelligence  
of Things applications in renewable energy

Research 

Description 

(Theme)

Objectives AI/AIoT 

Techniques

Application 

Areas

Key Findings Citations

AI and numerical 
models in hybrid 
renewable 
energy systems 
(HRESs)

To review AI 
applications 
in optimizing 
HRESs 
integrated 
with fuel cells.

GA, PSO, 
simulated 
annealing, RF, 
KNN, SVM, 
ANN

Solar photo-
voltaic, wind 
energy, fuel 
cells

AI-based 
modelling 
identiĔes 
conditions for 
maximum power 
production, 
predicting 
drawbacks during 
unexpected load 
peaks.

Al-Othman 
et al. (2022)

Bio-inspired 
algorithms in 
maximum power 
point tracking 
for PV systems

To review 
bio-inspired 
algorithms 
for maximum 
power point 
tracking in 
PV systems 
under partial 
shading.

ANN, FL 
Control, 
bio-inspired 
algorithms

Photovoltaic 
systems

Bio-inspired 
algorithms 
effectively 
track the global 
maximum 
power point, 
outperforming 
traditional 
methods under 
partial shading.

Guiqiang et 
al. (2018)

AI-based 
solar radiation 
prediction 
model for 
green energy 
utilization

To develop AI-
based models 
for accurate 
solar radiation 
prediction.

ANN, SVM, 
RF

Solar energy 
systems

AI models, 
especially ANN, 
show superior 
performance 
in predicting 
solar radiation, 
improving energy 
management 
and planning.

Alassery et al. 
(2022)

AI support for 
integrating 
variable 
renewable 
energy sources

To evaluate 
AI’s potential 
in managing 
integration 
costs of 
variable 
renewable 
energy 
sources.

AI, data-
intensive 
technologies

Variable 
renewable 
energy 
sources

AI systems 
reduce 
integration 
costs of VREs, 
enhancing 
system value and 
efĔciency.

Boza and 
Evgeniou 
(2021)
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Table 3 (continued): ArtiĔcial Intelligence and ArtiĔcial Intelligence  
of Things applications in renewable energy

Research 

Description 

(Theme)

Objectives AI/AIoT 

Techniques

Application 

Areas

Key Findings Citations

Large-scale 
renewable 
integrations 
for carbon 
neutrality

To analyse AI 
techniques 
for large-scale 
renewable 
energy 
integrations 
and carbon 
neutrality 
transition.

AI techniques Multi-energy 
systems, 
renewable 
energy

AI techniques 
optimize 
operational 
control and 
effectiveness 
of large-scale 
renewable 
integrations, 
aiding in carbon 
neutrality.

Liu et al. 
(2022)

ML for high-
temperature 
reservoir 
thermal energy 
storage

To optimize 
high-
temperature 
reservoir 
thermal 
energy 
storage using 
ML.

ANN, GA Thermal 
energy 
storage

ML techniques 
optimize 
HT-RTES site 
selection and 
performance, 
aiding in 
renewable 
energy storage.

Jin et al. 
(2022)

AIoT for 
renewable 
energy systems

To explore 
AIoT 
applications 
in enhancing 
renewable 
energy 
systems.

AIoT Solar, wind 
energy 
systems

AIoT improves 
efĔciency and 
performance 
of renewable 
energy systems 
through 
enhanced data 
utilization.

El Himer et al. 
(2022)

AI for predictive 
maintenance 
of renewable 
energy systems

To assess 
AI-assisted 
predictive 
maintenance 
in renewable 
energy 
systems.

AI techniques Wind farms AI assistance 
improves 
maintenance 
efĔciency and 
fault detection in 
wind farms.

Shin et al. 
(2021)

Hybrid AI and 
IoT model for 
renewable 
energy 
generation

To develop 
an IoT-based 
system for 
renewable 
energy 
generation 
using AI 
models.

ANN, 
Adaptive 
Neuro-Fuzzy 
Inference 
System 
(ANFIS)

Household, 
industrial 
energy 
systems

AI models 
enhance 
renewable 
energy 
generation 
efĔciency, 
with ANN 
outperforming 
ANFIS.

Puri et al. 
(2019)



53

Table 3 (continued): ArtiĔcial Intelligence and ArtiĔcial Intelligence  
of Things applications in renewable energy

Research 

Description 

(Theme)

Objectives AI/AIoT 

Techniques

Application 

Areas

Key Findings Citations

Comparison of 
AI methods for 
solar radiation 
estimation

To compare 
various AI 
methods for 
estimating 
daily global 
solar radiation.

Group 
Method of 
Data Handling 
(GMDH), 
Multilayer 
Feed-Forward 
Neural 
Network 
(MLFFNN), 
ANFIS, 
ANFIS-PSO, 
ANFIS-GA, 
ANFIS-ACO

Solar energy 
systems

GMDH model 
outperforms 
others in 
predicting 
global horizontal 
irradiance.

Khosravi et al. 
(2018)

AI for optimizing 
thermal energy 
storage systems

To explore AI 
applications 
in optimizing 
thermal 
energy 
storage 
systems.

PSO, ANN, 
SVM, ANFIS

Thermal 
energy 
storage 
systems

AI techniques 
optimize, predict, 
and control the 
performance 
of thermal 
energy storage, 
enhancing 
efĔciency and 
reliability.

Olabi et al. 
(2023)

AI in renewable 
energy systems

To review AI 
applications 
in renewable 
energy 
systems.

ANN, LSTM, 
RNNs, CNNs, 
GA, PSO

Renewable 
energy 
systems

AI and ML 
techniques 
signiĔcantly 
improve 
modelling and 
optimization 
of renewable 
energy systems.

Shoaei et al. 
(2024)

AI for energy 
storage in hybrid 
renewable 
energy sources

To optimize 
energy 
storage 
systems 
in hybrid 
renewable 
energy 
sources.

Group 
Method of 
Data Handling 
(GMDH), 
Multilayer 
Feed-Forward 
Neural 
Network 
(MLFFNN), 
ANFIS, 
ANFIS-PSO, 
ANFIS-GA, 
ANFIS-ACO

Hybrid 
renewable 
energy 
sources

The proposed 
AI technique 
optimizes ESS 
for hybrid 
renewable 
energy, 
outperforming 
recent methods.

Banu et al. 
(2022)
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Table 3 (continued): ArtiĔcial Intelligence and ArtiĔcial Intelligence  
of Things applications in renewable energy

Research 

Description 

(Theme)

Objectives AI/AIoT 

Techniques

Application 

Areas

Key Findings Citations

Adaptive 
artiĔcial neural 
network for 
renewable 
energy 
generation 
prediction

To propose a 
novel adaptive 
neural 
network for 
renewable 
energy 
prediction.

Mode 
Adaptive 
ArtiĔcial 
Neural 
Network 
(MAANN), 
Advanced 
Particle 
Swarm 
Optimization 
(APSO), Jaya 
Algorithm, 
Fine-Tuning 
Metaheuristic 
Algorithm 
(FTMA)

Solar and 
wind energy 
systems

The proposed 
algorithm 
signiĔcantly 
reduces 
prediction errors 
compared to 
conventional 
methods.

Zamee and 
Won (2020)

AI in off-
grid hybrid 
renewable 
energy system 
optimization

To Ĕnd 
optimal design 
for off-
grid hybrid 
renewable 
energy 
systems.

Bonobo 
Optimizer 
(BO), Big 
Bang–Big 
Crunch 
(BBBC), 
Crow Search 
(CS), Genetic 
Algorithm 
(GA), 
Butterĕy 
Optimization 
Algorithm 
(BOA)

Off-grid 
hybrid 
renewable 
energy 
systems

BO technique 
achieved optimal 
solutions with the 
lowest annualized 
system cost 
and quick 
convergence.

Farh et al. 
(2022)

AI for managing 
renewable 
power 
curtailments

To minimize 
renewable 
power 
curtailments 
using AI.

DL, Gated 
Recurrent Unit 
(GRU)

Wind and 
solar energy 
systems

AI methods 
signiĔcantly 
reduce 
curtailments, 
with AWEs 
outperforming 
BESSs in cost 
and operational 
efĔciency.

Shams et al. 
(2021)
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Table 3 (continued): ArtiĔcial Intelligence and ArtiĔcial Intelligence  
of Things applications in renewable energy

Research 

Description 

(Theme)

Objectives AI/AIoT 

Techniques

Application 

Areas

Key Findings Citations

Optimal sizing 
of hybrid 
renewable 
energy systems

To propose 
optimal sizing 
of hybrid 
renewable 
energy 
systems using 
AI.

GA, ABC PV/battery 
and PV/wind 
turbine/ 
battery 
systems

Heuristic 
algorithms 
outperform 
deterministic 
algorithms in 
Ĕnding optimal 
solutions for 
HRESs.

Demolli et al. 
(2021)

AI for improving 
performance 
of renewable 
energy 
conversion and 
storage

To enhance 
performance 
of solar water 
heaters using 
AI.

ANN Solar water 
heaters

ANN optimizes 
performance 
of PV-powered 
solar water 
heaters, 
improving 
efĔciency and 
reliability.

Asiri et al. 
(2022)

Comprehensive 
analysis and 
synthesis of 
AI and ML 
applications 
in renewable 
energy

Examine 
AI and ML 
applications 
across 
renewable 
energy for 
efĔciency, 
reliability, and 
sustainability.

AI, ML, IoT, 
Blockchain 
and Edge 
Computing

Renewable 
energy 
forecasting, 
smart grids, 
energy 
management, 
energy 
storage 
systems

AI and ML 
techniques 
enhance 
efĔciency, 
reliability, and 
sustainability 
in renewable 
energy systems 
through precise 
forecasting, 
optimized energy 
production and 
distribution, 
and predictive 
maintenance.

Rane et al. 
(2024)
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While the application of AI in domains, such as thermal comfort prediction and control, fault 
detection and diagnosis, energy storage optimization, and demand response, has shown promising 
results in enhancing energy efĔciency, reducing waste, and promoting sustainable development ( 
Fang et al., 2023; Rane et al. 2024), its effectiveness is an ongoing process that heavily relies on 
the accuracy of input data and the appropriate selection of AI algorithms (Arumugam et al., 2022; 
Ouadah et al., 2022). Moreover, the lack of accessible data and skilled AI experts poses a signiĔcant 
barrier to its widespread application in energy efĔciency . Nevertheless, the integration of AI and 
AIoT in energy systems has demonstrated substantial potential in enhancing energy conservation, 
optimizing renewable power deployment and generation, and supporting sustainable development 
goals, making renewable energy technologies more broadly suitable and reliable, towards a complete 
energy transition. 

The main challenges and risks that can be encountered while deploying AI systems for the use cases 
presented in Section 4.5 are:

•	 High Initial Costs: Procuring and maintaining AI-driven energy optimization systems can be too 
expensive for smaller utilities and governments.

•	 Grid Instability: Frequent power outages or inconsistent energy supply disrupt AI systems that 
rely on continuous data streams.

•	 Limited Technical Skills: Shortage of trained engineers and data scientists undermines the 
long-term sustainability of AI solutions.

•	 Risk of Lock-In: Dependence on proprietary software or external vendors can constrain local 
autonomy and innovation.

4.6. Transport Management

As the global population continues to urbanize and industrial activities expand, the efĔciency of 
transportation systems becomes increasingly critical. AI has emerged as an innovative or a beneĔcial 
technology in transport management, offering solutions to optimize operations, enhance safety, and 
reduce environmental impacts. 

4.6.1. ArtiĔcial Intelligence Interventions in Transport Management

AI-driven technologies can enhance the development of smarter and more sustainable transportation 
networks, which is crucial for mitigating greenhouse gas emissions. The transportation sector 
accounts for nearly one-third of global emissions (Solaymani, 2022), making it essential to reduce 
these emissions as part of climate change initiatives. AI optimizes routes considering trafĔc patterns 
and weather, improving fuel efĔciency, and decreasing travel times . By enhancing transportation 
systems, AI offers promising solutions for reducing the carbon footprint (Fatemidokht et al., 2021).

AI-powered trafĔc management systems use real-time data from sensors and GPS to monitor 
trafĔc ĕow and dynamically adjust signals, reducing idling and unnecessary detours. These systems 
can greatly enhance efĔciency and result in signiĔcant cost savings and reduced emissions (Chen 
et al., 2023). Moreover, the integration of AI with sustainable transportation methods, like bicycle-
sharing schemes, has been shown to improve urban mobility through better data management using 
technologies like IoT (Puri et al., 2020). AI also enhances public transit by optimizing scheduling 
and encouraging lower-emission transportation modes (Nikitas et al., 2020; Olayode et al., 2020). 
This involves analysing data to predict demand and adjust routes, accordingly, promoting more 
sustainable options (Chen et al., 2023).
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The rise of autonomous vehicles (AVs) represents a signiĔcant transformation in transportation. 
AVs can reduce accidents and emissions by improving fuel efĔciency and trafĔc patterns (Tyagi 
and Aswathy 2021). Furthermore, the concept of Shared Autonomous Electric Vehicles (SAEVs) 
offers beneĔts by alleviating congestion and reducing greenhouse gas emissions (Ahmed et al., 
2023). Studies show that adopting SAEVs could lower emissions and costs, providing substantial 
environmental and economic advantages compared to privately owned vehicles (Jones and 
Leibowicz, 2019).

4.6.2. ArtiĔcial Intelligence for Industry Production

AI can enhance the efĔciency of logistics and supply chain operations, reducing costs and emissions. 
They can also improve load management, predict maintenance needs, and optimize routes by 
utilizing data-driven insights, leading to more efĔcient and reliable freight transportation systems. The 
integration of AI in these sectors enhances operational efĔciency and contributes to environmental 
sustainability and climate change mitigation by minimizing the adverse effects of industrial activities 
and freight transport. 

AI has the potential to transform supply chain management by enhancing decision-making processes 
and automating various tasks to reduce supply bottlenecks. AI systems can monitor and identify issues 
with speciĔc food products, and aiding supply chain management during large-scale food supply 
can forecast demand more accurately, helping to adjust storage needs and prevent overstocking or 
shortages. This ensures that perishable goods are sold while still fresh, reducing waste (Lutoslawski 
et al., 2021). AI systems also enhance livestock supply chains by aiding in production planning, quality 
control, and predicting maintenance needs before they arise (Helo and Hao, 2022). Within storage 
facilities, AI combined with IoT sensors can continuously monitor and adjust conditions, such as 
temperature and humidity, optimizing the life cycle of perishable goods while minimizing waste and 
energy consumption (Wang et al., 2022). Furthermore, AI is used to optimize food distribution routes 
and vehicle loads, which helps reduce carbon emissions from the food supply chain (Yaiprasert and 
Hidayanto, 2023).

Moreover, Cohen et al. (2023) noted that pre-component production necessitates signiĔcant data 
analysis. They emphasized that if component data problems arise during modelling, it can lead to 
waste and reduce the enterprise’s productivity, ultimately causing resource waste. CiofĔ et al. (2020) 
focused on intelligent manufacturing, emphasizing a fully integrated and collaborative production 
system. This system is designed to respond in real time to evolving conditions within the factory, 
supply network, and according to customer needs. Dwivedi et al. (2021) indicated that AI systems 
enhance efĔciency by integrating management methods, such as combining AI with lean production. 
This approach allows each production link to calculate its efĔciency, thereby reducing waste of raw 
materials due to idleness and helping enterprises optimize their production lines. The primary role 
of AI in this context is as a tool for data analysis, enabling the interpretation and evaluation of results 
to improve energy and resource management. The extensive use of fossil fuels in manufacturing 
processes is a major contributor to signiĔcant CO2 emissions (Yue and Gao, 2018).

Various studies have explored different facets of AI applications, highlighting their practical 
implications and the signiĔcant challenges they present. Liu et al. (2024) provided a comprehensive 
analysis and synthesis of AI applications in the modular construction industry. Their systematic 
exploration underscores the advancements in AI technologies, such as ANNs and ML, which enhance 
production efĔciency, optimize logistics, and improve operational management. Yang et al. (2021) 
proposed a new model for intelligent manufacturing in the process industry. This model emphasizes 
the deep integration of industrial AI and the Industrial Internet, leveraging AI for optimal decision-
making, autonomous control systems, and improved operational management. The study highlights 
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AI’s effective role in traditional process industries through enhanced decision-making and control 
systems. Plathottam et al. (2023) offered a detailed analysis of AI/ML technologies, identifying 
key areas where AI can improve efĔciency, such as predictive maintenance, quality assurance, 
and process optimization. However, the authors highlight signiĔcant challenges, including data 
acquisition, security risks, and trust issues, which must be addressed to fully leverage AI’s potential 
in manufacturing. 

Furthermore, recent studies highlight the signiĔcant potential of AI in enhancing global economic 
dynamics and Ĕrm performance. Liu et al. (2024) focused on the broader impact of AI on the 
Global Value Chain (GVC) position of the manufacturing industry. Using extensive panel data 
from 61 countries, their Ĕndings reveal that AI improves the GVC position by enhancing production 
efĔciency, boosting technological innovation, and reducing trade costs. The study is particularly 
insightful for policymakers, emphasizing AI’s more pronounced impact in developing countries and 
various manufacturing sectors, thereby promoting global competitiveness.

The main challenges and risks that can be encountered while deploying the AI use cases presented 
in Section 4.6 are:

•	 Inadequate Infrastructure: Poor road networks and limited public transport options reduce 
the potential impact of AI optimization.

•	 Connectivity Constraints: Unstable communications infrastructure can disrupt real-time 
tracking and data-sharing.

•	 Uneven BeneĔts: Improvements in transport logistics may serve only well-connected urban 
areas, leaving out rural regions.

•	 Privacy and Security Concerns: Collecting mobility data without strong data protection 
regulations can expose citizens to misuse.

4.7. Disaster Risk Reduction

Disaster risk reduction involves strategies to minimize the damage caused by natural and  
human-made disasters. AI systems play an important role in enhancing both preparedness and 
recovery efforts.

The International Organization of Migration (IOM) reports that climate has now become the leading 
driver of internal displacements (more than conĕict). Migration induced by environmental factors 
such as climate change or natural disasters is on the rise, and only expected to increase. IOM is a 
leading organization on climate mobility, working at community and national levels to support 
prevention, preparedness, response, and recovery. Early action and disaster risk reduction are key 
pillars in IOM interventions to support millions of women, men, and children, especially in a world 
of growing climate-related humanitarian emergencies. In 2020, 30.7 million people were internally 
displaced by disasters; a number three times greater than those displaced by conĕict and violence 
(9.8 million people). Of those displaced by disasters, 98% faced weather and climate hazards. 
Climate and weather-related disasters have affected a further 1.7 billion people globally during 
the past decade. These numbers are expected to rise as the frequency, duration, and intensity 
of natural hazards worsen. However, Microsoft is partnering with the IOM so they can use AI and 
analytics capabilities to better understand the impact of climate-induced migration and improve 
their humanitarian efforts.
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4.7.1. Predictive Analytics Shaping Evacuation Planning

AI models aid in shaping evacuation planning through predictive analytics. AI systems can predict 
the potential impact of disasters, related to ĕoods, hurricanes, earthquakes, and heatwaves, by 
analysing historical data and real-time inputs. Indeed, advancements in AI for processing climate 
big data enable the identiĔcation of more comprehensive future climate change scenarios and the 
development of intelligent early warning systems (Leal Filho et al., 2022). Climate change predictions 
enable authorities to identify high-risk areas and develop effective evacuation routes and strategies. 
For instance, AI models can simulate various disaster scenarios and assess their potential outcomes, 
providing valuable insights into the best evacuation practices. AI can also be used to determine the 
ideal placement of trafĔc sensors to avoid bottlenecks during such evacuations (Gazzea, 2023). This 
predictive capability ensures that evacuation plans are timely and tailored to the speciĔc dynamics of 
an impending disaster, thereby enhancing the safety and efĔciency of evacuations. 

In the context of extreme weather disasters, AI applications enhance public engagement in climate 
issues and stimulate collective action by accurately predicting and visualizing climate change risks 
(Alemany et al., 2019; Walsh et al., 2020). These AI-driven insights aid decision-support efforts 
through real-time monitoring, thereby improving situational awareness and enabling timely 
interventions (Anbarasan et al., 2020; Booth, 2018; Samadi, 2022; Walsh et al., 2020). AI can 
contribute to climate change mitigation by enhancing the prediction of extreme weather events 
(McGovern et al., 2017; Shultz et al., 2021). Huntingford et al. (2019) highlighted the potential of 
ML in climate change preparedness in terms of its ability to provide enhanced warnings of extreme 
weather events. AI models are adept at identifying complex patterns and correlations, allowing them 
to forecast the likelihood and potential severity of extreme weather events with greater accuracy. 
This predictive capability improves intelligent early warning systems, providing timely alerts and 
enabling proactive measures to reduce the impact of these events (Leal Filho et al, 2022; Rolnick et 
al., 2022).

Anbarasan et al. (2020) proposed a ĕood detection system integrating IoT, big data, and 
Convolutional Deep Neural Networks (CDNN) to enhance ĕood prediction accuracy. Their system 
pre-processes data to eliminate redundancies and applies CDNN for classiĔcation, outperforming 
ANN and DNN. Samadi (2022) introduced the Flood Analytics Information System (FAIS), which 
combines AI, big data, and IoT to provide real-time ĕood monitoring and situational awareness. 
FAIS successfully integrates crowd intelligence, ML, and NLP to improve ĕood risk assessments and 
response strategies. Khalilpourazari and Pasandideh (2021) presented a robust optimization model 
for ĕood evacuation planning, leveraging AI to optimize shelter locations and helicopter routes, 
signiĔcantly improving rescue rates and cost efĔciency.

During disasters, the coordination of response efforts is critical to minimizing harm and ensuring 
a swift recovery. AI systems facilitate this coordination by integrating data from multiple sources, 
including satellite imagery, sensor networks, and social media feeds. AI models can signiĔcantly aid 
disaster relief efforts by mapping ĕoods, locating refugee camps using satellite data (Logar et al., 
2020), as well as identifying the populations most in need of assistance. This integration provides 
real-time situational awareness (Abid et al., 2021; Samadi, 2022), allowing responders to understand 
the scope and scale of the disaster as it unfolds. Furthermore, AI systems optimize resource 
allocation by analysing the availability and location of emergency resources such as medical supplies, 
personnel, and equipment. This real-time optimization ensures that resources are deployed where 
they are most needed, enhancing the overall effectiveness of the disaster response. 
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Lee and Chien (2020) explored AI and IoT in robotic disaster response, highlighting the potential of 
AIoT in coordinating robotic swarms for search and rescue operations, thus improving the efĔciency 
and effectiveness of disaster response. Swarna and Bhaumik (2022) explored the integration of AI 
and IoT devices to enhance the prevention, response, and recovery phases of disaster management. 
The study focuses on developing a platform that combines multiple AI components, IoT devices, and 
data sources into a uniĔed system to improve disaster management practices. The study resulted in 
the creation of an integrative AI platform designed to oversee real-time data collection and analysis 
through IoT devices. Two use cases in disaster prevention were highlighted, demonstrating the 
platform’s capability to implement predictive monitoring and efĔcient response strategies. 

Raza et al. (2020) focus on enhancing communication infrastructure in disaster-affected areas using 
AI and social media platforms to form resilient communication networks. The researchers propose 
a user-centric approach to create communication networks in areas where the infrastructure has 
been compromised due to natural disasters related to ĕoods, earthquakes, and storm surges. The 
proposed solution involves forming ad hoc clusters to enable emergency communications, utilizing 
a novel cluster formation framework that supports both single and multi-hop communication. Their 
innovative approach maximizes communication throughout and accurately classiĔes disaster impact 
areas, thereby facilitating better coordination and response. The ML techniques used to classify 
disaster-prone areas showed promising results, suggesting that this approach could effectively 
restore communications and provide situational awareness during disasters. 

Saleem and Mehrotra (2022) examined the emergent use of AI and social media for disaster 
management. The primary aim is to highlight how AI systems can process disaster-related content 
from social media to aid disaster response organizations in making effective decisions. The research 
underscores the importance of timely and relevant information, which social media provides during 
disasters, offering real-time insights from affected communities. It also presents case studies 
demonstrating new approaches for disseminating and acquiring time-sensitive information during 
disasters. The Ĕndings underscore the potential of AI-based systems to exploit social media data for 
improving the efĔciency and effectiveness of disaster management strategies.

4.7.2. Post-Disaster Risk Assessment: A Multi-faced Approach

AI-driven risk assessment tools help identify vulnerable areas and populations, enabling targeted 
interventions before disasters strike (Kuglitsch et al., 2022b). Authorities can enhance their 
preparedness strategies by harnessing the power of AI, ensuring more effective and timely 
interventions during disasters. Ghaffarian et al. (2023) examined the role of Explainable AI (XAI) in 
enhancing Disaster Risk Management (DRM) by improving decision-making processes. The authors 
identiĔed various types of hazards and disasters, risk components, and AI and XAI methods. The 
Ĕndings indicate a signiĔcant increase in the use of XAI techniques for DRM, underscoring the growing 
importance of transparency and interpretability in AI applications. The study highlights the need for 
multi-hazard risk analysis, the integration of XAI in early warning systems, and the incorporation of 
causal inference methods to enhance DRM strategy planning and effectiveness. 

Sun et al. (2020) emphasize the increasing damage and socio-economic losses caused by natural 
hazards. The study reviews AI applications across the four phases of disaster management. In the 
mitigation and preparedness phases, AI techniques assist in risk assessment, early warning systems, 
and community education to enhance disaster readiness. The response phase sees the highest 
concentration of AI applications, leveraging real-time data processing, optimizing resource allocation, 
and improving situational awareness. In the recovery phase, AI systems aid in damage assessment 
and efĔcient resource allocation for rebuilding efforts. Additionally, the study identiĔes challenges 
such as data quality, system integration, and ethical considerations, aiming to inspire further research 
and advancements in AI to address these issues effectively.
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Exploring the potential of AI in disaster risk management, Velev and Zlateva (2023) emphasize the 
numerous challenges in applying AI to this Ĕeld. These challenges include the necessity for high-
quality and diverse data, ensuring compatibility with existing systems and technologies, addressing 
ethical and social implications, and the need for continuous research and development. Additionally, 
they underscore the critical importance of data privacy and security, given that AI applications in 
disaster management often involve handling sensitive information. The study aims to analyse these 
challenges to ensure that AI systems are developed and utilized in ways that are fair, equitable, and 
effective in mitigating the impacts of disasters. Similar topics are addressed in the technical reports 
of the ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management (ITU, 2024a).

Salluri et al. (2020) utilized CNN for object detection in disaster scenarios, focusing on ĕoods and 
earthquakes. Their study demonstrated high accuracy with pre-trained models like VGG-19, aiding in 
efĔcient disaster recovery operations. Equipped with AI algorithms, these technologies can analyse 
vast amounts of visual data to identify and quantify damage to infrastructure, homes, and natural 
landscapes. Zhang et al. (2023) proposed a hybrid learning approach combining AI and crowdsourced 
data to improve the generality of disaster damage assessment models, demonstrating substantial 
improvements over traditional methods. Sun et al. (2020) highlighted the importance of AI in disaster 
response and recovery, showcasing its ability to enhance the assessment of damage and socio-
economic losses resulting from natural hazards and prioritization of recovery efforts. The authors 
concluded that, in the recovery phase, AI is key to swiftly assessing damage and efĔciently allocating 
resources for rebuilding efforts. Abid et al. (2021) highlighted AI’s important role in enhancing 
recovery operations by facilitating rapid data analysis and visualization, enabling governments to 
make quicker and more informed decisions in the aftermath of a disaster. By analysing large volumes 
of data from various sources, ML models can quickly identify the most affected areas and prioritize 
them for immediate action. This enhances the overall efĔciency and effectiveness of recovery 
operations and streamlines the reconstruction process. Khajwal et al. (2022) focused on the reliability 
of automated post-disaster building damage classiĔcation using AI and multi-view imagery. Current 
AI applications in post-disaster damage assessment often lack detailed classiĔcation of damage 
levels and are based on limited aerial or satellite imagery. To address these limitations, the authors 
propose using comprehensive visual data from multiple ground and aerial views of buildings. A Multi-
view Convolutional Neural Network (MV-CNN) architecture is employed to combine information 
from different views, providing a spatially aware damage prediction model. The model is trained 
and validated on a dataset of geotagged, expert-labelled images of buildings affected by Hurricane 
Harvey. The Ĕndings demonstrate that the proposed model achieves reasonably good accuracy in 
predicting damage levels, offering a more reliable tool for AI-assisted disaster management.

Arachie et al. (2020) focused on identifying critical sub-events after large-scale disasters using 
unsupervised learning on social media data. Their method effectively Ĕltered and ranked relevant 
information, enhancing emergency responders’ ability to manage crises. The Ĕndings demonstrate 
that their unsupervised learning framework effectively identiĔes and ranks important sub-events, 
thereby aiding emergency responders in making informed decisions for resource allocation and 
response planning. This post-disaster analysis is validated through quantitative experiments 
on data from Hurricane Harvey and the 2015 Nepal Earthquake, showing its effectiveness over 
baseline methods.

The initiative led through national and international cooperation and partnership highlights the 
use of DL techniques and aerial imagery to improve climate resilience in the Caribbean housing 
sector (Tingzon et al., 2023; World Bank, 2023). This approach leverages advanced AI methods to 
generate critical housing stock data rapidly, aiding disaster risk management and supporting climate 
adaptation efforts in SIDS.
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CASE STUDY

MAPPING HOUSING STOCK CHARACTERISTICS FROM AERIAL  
AND STREET VIEW IMAGES USING DL FOR CLIMATE RESILIENCE  
IN THE CARIBBEAN

Country: Dominica, Saint Lucia, Grenada
Entities Involved:The World Bank, Global Facility for Disaster Reduction and 
Recovery (GFDRR), Government of the Commonwealth of Dominica (GoCD), and 
Government of Saint Lucia (GoSL)

Brief description

The Caribbean region is among the most vulnerable globally to climate risks due to the 
increasing frequency and severity of natural hazards like tropical cyclones, landslides, 
and ĕoods. Small Island Developing States (SIDS) often sustain the highest levels 
of damage, particularly in the housing sector. Accurate and up-to-date information 
on the spatial distribution and characteristics of buildings is crucial for effective 
vulnerability assessment and disaster risk management. However, traditional house-
to-house surveys are expensive and time-consuming, creating signiĔcant obstacles.

To address this, a project was initiated to develop a workĕow that rapidly generates 
critical baseline housing stock data using high-resolution drone images and DL 
techniques. Leveraging CV, particularly the Segment Anything Model and CNNs, 
this project automates the generation of exposure data maps. The goal is to enable 
government agencies to identify damaged buildings following a disaster swiftly and 
cost-effectively and proactively detect at-risk structures before a disaster occurs. 
This initiative, under the Digital Earth for Resilient Housing and Infrastructure in the 
Caribbean, seeks to improve the climate resilience of the housing sector in SIDS in the 
Caribbean. Future expansions of this methodology are planned for countries in Asia 
and the PaciĔc.

Climate Change Mitigation and/or Adaptation Impacts and Results

The project has produced building footprint and roof type classiĔcation maps for 
Dominica (see example in Figure 5), Saint Lucia, and Grenada, which are essential for 
climate risk and vulnerability assessments. Additionally, building characteristics such 
as material type, completeness, and condition have been extracted from street-view 
photos to further support these assessments. 

Figure 5: An AI-generated map of building footprints in Salisbury, Dominica.  
Drone image is taken from OpenAerialMap
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Figure 6 illustrates the sequence of roof material classiĔcation and changes in a 
Caribbean housing sector pre- and post-disaster in Colihaut, Dominica. The four 
images provide a comparative visual analysis that highlights the impact of disasters 
on roof materials and the effectiveness of the classiĔcation approach in both pre- and 
post-disaster contexts.

Figure 6: Pre- and post-disaster roof material classiĔcation maps  
in Colihaut, Dominica

Challenges and Lessons Learned Regarding Development and Implementation

One of the initial challenges was identifying the exposure data gaps in the target 
regions and deĔning the relevant building characteristics that could feasibly be 
extracted from drone and street-view images. This project underscored the critical 
importance of extensive stakeholder engagement for the successful adoption of 
AI technologies.

This work also highlighted the necessity of building local capacity within government 
agencies and the importance of democratizing capacity through open-source tools 
and datasets. Bridging the gap between data, action, and impact requires robust 
collaboration among technical experts, social scientists, government stakeholders, 
and local communities..

The main challenges and risks that can be encountered while deploying AI systems for the use cases 
presented in Section 4.7 are:

•	 Incomplete Hazard Data: Limited historical records of disasters (e.g., cyclones, storm surges) 
weaken AI-based risk assessments.

•	 Failure of Critical Systems: When disasters strike, power and connectivity may go down, 
rendering AI-driven warning systems inoperable.

•	 Unequal Access to Warnings: Without widespread mobile or internet coverage, communities 
in remote areas may miss alerts.

•	 Over-reliance on Tech: AI systems might overshadow local knowledge or traditional coping 
mechanisms, potentially eroding community resilience.
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4.8. Emerging Large Language Model Applications

LLMs represent a promising new frontier in climate action, offering game-changing potential, 
especially in developing countries where resources and expertise are often limited. Despite the 
considerable excitement surrounding these technologies, it is important to acknowledge that many 
LLM applications are still in the early stages of development, and research in this area remains in 
its infancy. However, the accessibility and affordability of LLMs will provide a unique opportunity 
for these regions to leverage cutting-edge technology and innovative solutions that can enhance 
climate resilience and sustainability.

The introduction of ClimateGPT, a model family of domain-speciĔc LLMs, marks a signiĔcant leap 
in applying AI to climate science (Thulke et al., 2024). ClimateGPT synthesizes interdisciplinary 
research on climate change, designed to provide in-depth, accurate, and accessible insights across 
various aspects of climate science. The family includes multiple model sizes, such as ClimateGPT-7B, 
13B, and 70B, each tailored to address different facets of climate-related information needs. In the 
spirit of transparency and collaboration, all versions of ClimateGPT are made publicly available. This 
openness facilitates widespread access and use, encouraging further research, development, and 
innovation in AI-driven climate solutions.

For developing countries, particularly SIDS and LDCs, LLMs can serve as powerful tools to 
overcome barriers related to resource constraints and technical expertise. By tapping into the 
capabilities of LLMs, these regions can gain access to advanced predictive modelling, data 
analysis, and decision-making tools that were previously out of reach. The potential impact of LLM 
applications in these areas is signiĔcant, as they can drive meaningful improvements in various 
sectors critical to climate action.
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CASE STUDY

AI ENABLER FOR CLIMATE SOLUTIONS

Country: China

Entities involved: Climind 

Brief description

Climind is an AI platform designed to tackle the complexities of climate change by 
leveraging the power of LLMs and Retrieval-augmented Generation (RAG). It offers 
an array of features that enhance decision-making and efĔciency in climate action 
through advanced NLP capabilities. Key functionalities include Climind Ask, which 
provides expert search capabilities, Climind Read with indexed search, and AI-driven 
analysis of regulatory documents. By integrating comprehensive corporate climate 
data with mitigation measures, Climind enables precise report generation, carbon 
pricing insights, climate risk assessments, and carbon trading information.

Climate Change Mitigation and/or Adaptation Impacts and Results

Climind, an AI-powered climate co-pilot, has signiĔcantly impacted climate change 
mitigation and adaptation efforts. By providing access to a comprehensive actionable 
climate data infrastructure, Climind enables precise climate policy/news search, 
comprehensive climate risk assessments, and more. Climind’s AI-driven insights 
support sustainable Ĕnance initiatives, guiding companies in reducing their carbon 
footprints and improving energy efĔciency. Additionally, Climind aids policymakers in 
developing effective climate strategies, contributing to the global transition towards 
a low-carbon economy.

Challenges and Lessons Learned Regarding Development and Implementation

The development and implementation of Climind faced several challenges. One 
major issue was the lack of authentic and real-time climate data, as the general AI 
models are primarily trained on internet data. Structuring this data to be useful for 
climate applications proved to be time-consuming and costly. Additionally, the slow 
adoption of AI within the climate sector posed a signiĔcant hurdle. Despite these 
challenges, it became evident that accelerating the industry’s adoption of AI is crucial. 
Climind’s potential application in time-consuming tasks, such as ESG reporting and 
the development of IPCC literature review, highlighted the need for efĔciency and 
speed in climate science. This experience underscored the importance of continuous 
innovation and the integration of advanced technologies to enhance climate action.



66

LLMs are indeed becoming increasingly accessible due to the availability of pre-trained models (e.g., 
GPT, BERT) through APIs and platforms, which smaller organizations and start-ups in developing 
countries can leverage without needing to train them from scratch. This increased accessibility 
and affordability offer new opportunities for these organizations to implement and scale AI-driven 
solutions that address climate challenges more effectively. 

The emerging applications of LLMs (Table 4) hold promise for LDCs and SIDS, focusing on use 
cases that are highly relevant to these regions and could signiĔcantly enhance their climate resilience 
and sustainability efforts.

Table 4: Emerging applications of Large Language Models in enhancing climate resilience 
and sustainability for LDCs and SIDS

Application Area Use Case

Knowledge 

Access and 

Capacity-

building

•	 Multilingual climate information chatbots providing localized climate data and 
adaptation strategies 

•	 AI-powered educational platforms offering personalized climate change curricula 

•	 Interactive policy guides helping local ofĔcials understand and implement climate 
regulations 

•	 Virtual assistants supporting climate scientists and researchers in data analysis and 
literature review 

•	 Language translation services facilitating access to global climate research for non-
English speakers

Climate-resilient 

Agriculture

•	 Conversational AI systems providing farmers with crop management advice and 
market information 

•	 LLM-powered apps interpreting weather forecasts and satellite imagery for local 
agricultural planning 

•	 Virtual agronomists assisting with pest identiĔcation and management strategies 

•	 AI-driven systems for documenting and sharing traditional ecological knowledge 

•	 Chatbots helping smallholder farmers access climate-smart agriculture techniques

Disaster 

Preparedness 

and Response

•	 Multilingual early warning systems delivering personalized emergency instructions 

•	 AI assistants supporting disaster response coordinators in resource allocation and 
logistics 

•	 Chatbots providing mental health support and coping strategies during climate-
related disasters 

•	 LLM-enhanced systems for rapid damage assessment and needs analysis post-
disaster 

•	 Virtual agents assisting in the development and updating of local disaster 
preparedness plans
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Table 4 (continued): Emerging applications of Large Language Models in enhancing 
climate resilience and sustainability for LDCs and SIDS

Application Area Use Case

Climate 

Migration

•	 Climate and natural hazard early warning systems 

•	 Early warning on migration for early action and disaster risk reduction to human and 
economic loss 

•	 Climate change and natural disaster monitoring 

•	 Monitoring and predictive analysis of human mobility and migration to address 
prevention, preparedness, response, and recovery

Climate Finance 

and Project 

Development

•	 AI-powered proposal writing assistants for climate project funding applications 

•	 LLM systems supporting the development of nationally determined contributions 
(NDCs) 

•	 Virtual consultants assisting in climate risk assessments for infrastructure projects 

•	 Chatbots guiding small businesses through green certiĔcation processes 

•	 AI assistants supporting the monitoring, reporting, and veriĔcation (MRV) of 
climate projects

Policy Analysis 

and Decision 

Support

•	 LLM-based systems analysing and summarizing climate policy documents for 
decision-makers 

•	 AI-driven scenario analysis tools for climate adaptation planning 

•	 Virtual policy advisors assisting in the development of climate-resilient regulations 

•	 Sentiment analysis tools gauging public opinion on climate policies from social 
media data 

•	 LLM-enhanced stakeholder engagement platforms for participatory climate 
planning

Clean Technology 

Adoption

•	 AI assistants guiding users through the installation and maintenance of renewable 
energy systems 

•	 Chatbots providing energy-saving tips and personalized recommendations for 
households 

•	 Virtual technicians supporting the troubleshooting of clean energy technologies 

•	 LLM-powered platforms facilitating knowledge sharing on locally-appropriate clean 
technologies 

•	 AI systems assisting in the adaptation of clean technologies to local contexts and 
needs
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Table 4 (continued): Emerging applications of Large Language Models in enhancing 
climate resilience and sustainability for LDCs and SIDS

Application Area Use Case

Biodiversity 

Conservation

•	 LLM-enhanced citizen science platforms for species identiĔcation and ecosystem 
monitoring 

•	 AI assistants supporting indigenous communities in documenting and preserving 
biodiversity knowledge 

•	 Virtual rangers providing information on protected areas and conservation 
guidelines 

•	 Chatbots educating tourists about responsible eco-tourism practices 

•	 LLM systems assisting in the analysis of biodiversity data for conservation planning

Climate 

Communication 

and Awareness

•	 AI-driven personalized climate communication tailoring messages to individual 
concerns and values 

•	 LLM-powered fact-checking tools combatting climate misinformation 

•	 Virtual climate educators providing interactive lessons on climate science and 
action 

•	 Sentiment analysis tools helping climate communicators reĔne their messaging 
strategies 

•	 Chatbots engaging citizens in local climate initiatives and volunteer opportunities

While Large Language Models (LLMs) are becoming more accessible, signiĔcant barriers remain 
for developing countries, particularly SIDS and LDCs. High computational demands, costs of Ĕne-
tuning, and deployment challenges limit access in resource-constrained regions. The extensive 
infrastructure and expertise required for effective training are typically available only to large 
tech companies in developed nations, rendering LLMs out of reach for many organizations in 
developing areas. In contrast, smaller AI/ML models with lower computational needs are often 
more practical in these contexts. Most major LLMs are trained primarily on English-language data, 
reducing their effectiveness in non-English-speaking regions and exacerbating the digital divide. 
The centralization of LLM development by companies like OpenAI, Google, and Meta further 
limits the inĕuence of smaller players from developing countries. This disparity has implications for 
knowledge representation and inclusivity in AI systems, as these models often overlook diverse 
global perspectives. Overall, while LLMs are accessible on certain platforms, their practical use is 
largely restricted to well-resourced entities, making smaller, specialized AI/ML models more feasible 
for developing countries. Addressing these challenges requires initiatives for democratizing AI 
resources, including multilingual training data and adaptable AI models.
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The main challenges and risks that can be encountered while deploying the AI use cases presented 
in Section 4.8 are:

•	 Language and Cultural Bias: Many LLMs are trained on data primarily from dominant 
languages and cultures, overlooking local dialects and contexts.

•	 High Computational Requirements: LLMs demand signiĔcant processing power, often 
placing them out of reach for institutions lacking infrastructure.

•	 Risk of Misinformation: LLMs can generate plausible sounding but factually incorrect 
information if not carefully curated and veriĔed.

•	 Data Privacy and Sovereignty: Using external LLM services might involve sending local data 
to remote servers, raising sovereignty and conĔdentiality issues.

4.9. Education and Community Engagement

Education and community engagement are critical components in the global effort to combat 
climate change. AI systems offer innovative tools and approaches that can enhance these efforts 
by making climate information more accessible, engaging, and actionable. There are various ways in 
which AI systems can support education and community engagement and contribute to empowering 
communities to take informed actions towards a sustainable future.

4.9.1. Raising Awareness of Climate Change through the  
Use of ArtiĔcial Intelligence

AI systems can play a critical role in raising awareness about climate action by providing powerful 
tools for data visualization, predictive modelling, and scenario analysis. These tools can help illustrate 
the impacts of climate change, highlight the beneĔts of mitigation and adaptation strategies, and 
demonstrate the urgency of taking action. 

At COP28, Parties emphasized the need to raise awareness about the potential roles and impacts 
of AI in advancing the outcomes of technology needs assessments and the joint work programme 
of the Technology Mechanism for 2023–2027 (Decision 9/CP.28, Decision 1/CMA.5, Decision 14/
CMA.5). The Technology Mechanism Initiative on AI for Climate Action provides a platform for policy 
discussions, raises awareness about the potential of AI for climate action, facilitates knowledge 
exchange among stakeholders, and supports capacity-building efforts to harness AI and develop 
locally-led climate solutions. 

Public awareness campaigns can utilize AI to personalize messages and reach a broader audience 
through social media and other digital platforms, and AI systems can help identify and target key 
demographics in this process, ensuring that climate action messages resonate with diverse audiences.
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In reference to “Visualizing the Future: ArtiĔcial Intelligence in Climate Action” (UNDP, 2024), an 
educational session demonstrated the power of images in raising awareness by using GenAI in 
scenario planning and citizen participation, where participants interacted with AI through their mobile 
phones, gaining new insights and contributing unique perspectives. This approach made climate 
change more tangible and urgent, fostering greater engagement from the audience and showing 
how this methodology can enhance citizen involvement, anticipate climate risks, and support 
inclusive, effective policy-making (UNDP, 2024). The next subsection will document how other AI-
powered educational tools can contribute to raising awareness of AI for climate action.

4.9.2. ArtiĔcial Intelligence-powered Tools for Climate  
Change Education 

AI-powered educational tools can improve climate change education by providing interactive and 
engaging learning experiences. For instance, AI-driven simulations and virtual reality environments 
can allow students to explore the effects of climate change in immersive ways. Intelligent tutoring 
systems can offer personalized learning pathways, adapting to each student’s knowledge level and 
learning style. These tools can also provide real-time feedback and assessments, helping educators 
tailor their instruction to meet the needs of their students. Moreover, AI systems can curate and 
recommend up-to-date educational content, ensuring that learners have access to the latest 
scientiĔc Ĕndings and resources. 

Recent studies have explored the potential of Virtual Reality (VR) technology to enhance awareness 
of climate change. Thoma et al. (2023) aimed to determine whether VR visualization impacts climate 
change awareness and environmental attitudes more effectively than traditional media. Using a 
model of the Aletsch glacier melting over 220 years, the study found that environmental awareness 
increased signiĔcantly only in VR conditions, suggesting VR’s potential to foster attitude change, 
regardless of the sophistication of the VR environment. Dhunnoo et al. (2023) conducted a case 
study with urban planning professionals to assess the effectiveness of Immersive Virtual Reality (IVR) 
in raising climate change awareness. Utilizing mobile LIDAR technology to create navigable urban 
models, participants could interact with a simulated inundated environment. Feedback indicated 
that IVR is a valuable educational tool, enhancing understanding of climate change impacts and the 
necessity of building resilient environments. Xu et al. (2022) focused on developing a VR application 
to simulate sea level rise and its effects on local scenery by 2100. This study highlighted VR’s potential 
as a high-quality educational tool, offering a more immersive experience than traditional media. The 
ongoing work includes porting the system to Augmented Reality (AR) and further evaluation of the 
tool’s effectiveness.

AI systems can analyse vast amounts of climate data, creating more accurate and dynamic VR 
simulations that reĕect real-time changes in the environment. AIoT integrates AI systems with 
connected devices, allowing for real-time data collection and updates to VR environments, 
making simulations more interactive and responsive (Bibri, 2023). These technologies can 
provide personalized and context-speciĔc information, improving the educational impact of VR 
and AR applications. AI tools enable VR experiences to become more engaging and informative, 
ultimately fostering greater awareness and proactive behaviour towards climate change mitigation 
and adaptation. AI has demonstrated signiĔcant importance in processing vast troves of data to 
enhance immersive experiences and enable human-like intelligence in virtual agents using ML, DL, 
NLP, among others (Huynh-The et al., 2023). This capability can enhance AI-powered tools for 
climate change education by providing more engaging and interactive learning environments. With 
these advanced AI techniques, educational tools can simulate complex climate scenarios, provide 
personalized learning experiences, and offer real-time feedback, thereby improving understanding 
and fostering proactive responses to climate change challenges.



71

Furthermore, understanding the factors inĕuencing AI acceptance is important for effectively 
integrating AI-powered tools into educational settings, particularly for enhancing climate change 
education. Osman and Yatam (2024) highlighted the importance of perceived usefulness, ease of use, 
and technological innovativeness in shaping the acceptance of AI and its enabled transformations. 
Among these factors, perceived ease of use is identiĔed as the most inĕuential, highlighting 
the necessity for user-friendly interfaces and streamlined processes. Practical implications for 
higher education institutions include the need for targeted interventions to boost technological 
innovativeness and foster a positive organizational climate conducive to innovation.

4.9.3. ArtiĔcial Intelligence-powered Tools for Promoting  
Sustainable Practices 

AI systems can support the promotion of sustainable practices by providing insights into individual 
and collective behaviours and suggesting actionable steps to reduce environmental impact. For 
example, AI-powered apps can track energy consumption, waste production, and carbon footprint, 
offering tailored recommendations for improvement to citizens, communities, businesses, and 
organizations. These tools can also facilitate community initiatives by identifying local sustainability 
challenges and opportunities. 

Kasinidou (2023) focused on the growing necessity for public AI literacy due to the burgeoning 
role of AI in daily life. This project sought to understand public perceptions of AI across different 
demographics, including children and adults, and to promote AI literacy through an open course 
tailored to various groups, such as educators, adults, the elderly, and children. Key Ĕndings revealed 
that after a short course on AI, participants gained a better understanding of AI, recognized its 
positive and negative aspects, and acknowledged the importance of educating both children and 
adults about AI. These Ĕndings can be extended to raise awareness of AI’s role in climate change 
by incorporating climate-focused AI education in public literacy programmes. Enhancing public 
understanding of AI’s applications in environmental contexts can drive more informed support for 
AI-driven climate initiatives.

Table 5 provides a comparative analysis of various studies, offering insights into how AI systems 
contribute to sustainability and showcasing the diverse applications of AI across different sectors in 
fostering sustainable practices.
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Table 5: ArtiĔcial Intelligence-powered tools  
for promoting sustainable practices

Research 

Theme

Applied 

Methods

Type of 

Sustainable 

Practices

AI Application 

Areas

Key Findings Citations

AI in promoting 
green HRM 
practices

AI, data 
analytics

Energy 
optimization, 
waste 
reduction

Human 
resource 
management

AI systems 
enhance 
efĔciency in 
recruitment, 
reduce 
bias, and 
promote eco-
engagement 
among 
employees.

John and 
Pramila (2024)

AI in adopting 
green HRM 
practices

AI Organizational 
sustainability, 
green 
environment

Human 
resource 
management

AI systems aid 
in adopting 
green HRM 
practices, 
shifting focus 
from proĔt 
maximization to 
sustainability.

Gupta (2021)

AI in 
sustainable 
Ĕnance

AI, ESG Environmental 
problem-
solving, 
Ĕnancial 
stability

Financial 
management

AI systems 
help recognize 
environmental 
issues, support 
sustainable 
Ĕnance, and 
enhance 
decision-
making.

Rani and Singh 
(2024)

The 
convergence 
of business 
intelligence 
(BI), AI, and 
sustainability

BI, AI, IoT, 
ML, Big Data, 
Blockchain, 
Edge 
Computing

Resource 
efĔciency, 
environmental 
footprint 
reduction

BI, sustainable 
development

Integration 
of BI, AI, IoT, 
ML, and Big 
Data improves 
operational 
efĔciency 
and minimizes 
waste.

Rane et al. 
(2024)
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Table 5 (continued): ArtiĔcial Intelligence-powered tools  
for promoting sustainable practices

Research 

Theme

Applied 

Methods

Type of 

Sustainable 

Practices

AI Application 

Areas

Key Findings Citations

AI and ML for 
green shipping

AI, ML Emission 
reduction, 
environmental 
stewardship

Maritime 
industry

AI-driven 
technology 
improves 
vessel 
operations, 
decreases 
emissions, 
and promotes 
sustainability.

Nguyen et al. 
(2024)

AI and AR 
in fashion 
industry

AI, AR, 
ORESTE

Waste 
mitigation, 
return 
reduction

Fashion 
industry

Consumers 
prefer AI-
powered 
mobile 
applications 
for camera-
assisted 
measurements 
and 
synchronized 
suggestions.

Karadayi-Usta 
(2024)

AI in real estate 
for ESG

AI, ML, RF Energy 
efĔciency, 
sustainable real 
estate

Real Estate 
industry

AI algorithms 
assess energy 
efĔciency 
and other 
attributes, 
impacting 
property prices 
and promoting 
informed 
decision-
making.

Walacik and 
Chmielews-ka 
(2024)

AI in 
sustainable 
education

AI Environmental 
responsibility, 
resource 
efĔciency

Education AI systems 
enhance 
sustainability 
education 
through 
personalized 
learning, 
curriculum 
development.

Harish et al. 
(2023)
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4.9.4. ArtiĔcial Intelligence-powered Tools for the Engagement of 
Local Communities in Climate Action 

Engaging local communities in climate action is important for driving grassroots change. AI 
systems can enhance community engagement by providing platforms for collaboration and 
communication. For instance, AI-driven social media analysis can identify inĕuential community 
members and organizations based on carefully selected criteria, helping to amplify their voices 
and mobilize support. AI systems can also facilitate participatory decision-making by analysing 
community feedback and integrating it into policy development. Furthermore, they can support 
local climate initiatives by providing tools for monitoring and reporting progress, ensuring 
transparency and accountability. 

Investigating the societal impact of AI from a human-centred perspective has become an important 
area of study (Shneiderman, 2020). Previous works in citizen science have identiĔed various methods 
of utilizing AI to engage the public in research. These methods include maintaining participant 
engagement, ensuring data quality, classifying and labelling objects, predicting user interests, and 
interpreting data pattern (Ceccaroni et al., 2019; Franzen et al., 2021; LotĔan et al., 2021; McClure 
et al., 2020). While these works investigated the challenges of designing AI systems that enable 
citizens to participate in research projects on a large geographic scale in a generalized way, an area 
that has received little attention is how scientists can co-create AI systems with local communities 
to address context-speciĔc concerns and inĕuence a particular geographic region. Therefore, Hsu 
et al. (2022) investigated how AI can be leveraged to engage and empower local communities in 
addressing societal and environmental issues. They emphasized the importance of integrating 
hyperlocal, context-speciĔc community data and knowledge into AI systems. Participatory design 
and ethnographic methods ensure that AI systems are tailored to the speciĔc needs of local 
communities. The authors argue for a community citizen science (CCS) approach, where local 
people are treated as collaborators rather than mere participants. This approach helps create AI 
systems that are more aligned with community needs and expectations. However, it also requires 
continuous adaptation of these systems to account for the dynamic nature of community issues 
and long-term social changes. The CCS framework, a subset of citizen science, is advantageous 
for co-creating solutions and generating social impact with communities dedicated to pursuing the 
Sustainable Development Goals (Fritz et al., 2019).
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CASE STUDY

COMMUNITY INNOVATION LABS FOR CLIMATE  
RESILIENCE (CO_LABS PROJECT)

Country: Indonesia 

Entities involved: Deutsche Gesellschaft für Internationale Zusammenarbeit (GZ) 
– FAIR Forward, Common Room Networks Foundation 

Brief description

The Community-based Innovation Lab for Climate Resilience (Co_LABS) Project 
addresses climate change challenges in Indonesia, particularly in rural and remote 
areas like Pulo Aceh and Maros, Indonesia. This initiative establishes community-
based innovation labs that serve as collaborative platforms for local engagement in 
climate resilience. These labs integrate local knowledge with advanced technologies 
such as AI and IoT to develop and implement sustainable practices. Key activities 
include conducting baseline studies, enhancing local capacity, and creating AI-driven 
solutions and remote sensing applications tailored to the needs of the blue economy. 
The project also emphasizes the integration of local traditional knowledge with 
modern technological tools to address climate adaptation and mitigation effectively.

Climate Change Mitigation and/or Adaptation Impacts and Results

The Co_LABS Project was launched by the planting of 500 mangrove seedlings in 
Maros, which directly contributes to coastal protection and carbon sequestration. 
This action not only addresses climate change directly but also enhances biodiversity 
and resilience of coastal ecosystems. The integration of AI and IoT technologies 
has led to improved environmental monitoring and management. In Maros, the 
use of IoT sensors has optimized Ĕsh farming operations, increasing efĔciency and 
sustainability. Capacity-building workshops, conducted in Bandung and planned 
for Pulo Aceh and Maros, have empowered local communities with the skills needed 
to manage and operate these technologies effectively. These workshops are crucial 
for ensuring that technology adoption leads to long-term climate resilience and 
sustainable development.

Challenges and Lessons Learned Regarding Development and Implementation 

One signiĔcant challenge was integrating advanced technologies, like AI and IoT, with 
traditional community practices. For example, ensuring that the IoT sensors developed 
were user-friendly and met the local needs required to adapt technology for the context 
of small-scale Ĕsh farms in Maros and subsistence agriculture in Pulo Aceh. Extensive 
capacity-building efforts were necessary to make these technologies accessible and 
understandable for community members. The project also encountered difĔculties in 
fostering active community engagement. This challenge highlighted the importance 
of ongoing support and training to build trust and involvement. Clear communication 
strategies and the involvement of local leaders were essential to address this issue. 
Lessons learned include the need for adaptable technology solutions that align 
with local conditions and practices, as well as the importance of continuous training 
and development of local leadership to sustain project outcomes and ensure the 
technologies’ long-term success.
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Incorporating indigenous knowledge (IK) into local AI models can enhance climate action strategies 
by integrating traditional ecological wisdom. AI can document and analyse IK, preserving it for 
broader climate solutions, such as mapping traditional land-use practices and predicting outcomes. 
Collaboration with indigenous communities is vital to ensure respectful representation.

In the speciĔc context of climate change, Chakravarty (2023b) proposed the integration of AI and ML 
with Indigenous Knowledge Systems (IKS) to enhance climate communication channels, particularly 
for extreme weather events in coastal regions. They found that blending AI/ML with IKS can improve 
the accuracy and timeliness of climate predictions and mitigation strategies. AI models can, by 
harnessing local knowledge, be Ĕnely tuned to the speciĔc contexts of indigenous communities, 
demonstrating a practical application of how AI can be enriched with traditional ecological wisdom to 
foster climate resilience. Akanbi and Masinde (2018) developed a rule-based drought early warning 
system using IK. Their research demonstrated that local IK could be effectively integrated into AI 
models to forecast drought conditions. The system enhances the accuracy and relevance of drought 
predictions and emphasizes the importance of incorporating IK into AI to address environmental 
challenges more effectively. Balehegn et al. (2019) documented the indigenous weather and climate 
forecasting knowledge of Afar pastoralists in Ethiopia. They found that traditional methods, when 
combined with modern AI systems, offer dynamic and accurate weather predictions. 

Molino (2023) explored inter-religious perspectives on AI and IK for environmental preservation, 
emphasizing the ethical dimensions required for sustainable practices. Overall, leveraging traditional 
wisdom alongside advanced technology can lead to more robust and culturally sensitive climate 
action strategies, improving predictive capabilities and resilience. Continued collaboration between 
indigenous communities and tech experts is essential for accurately representing IK and beneĔtting 
both local and global ecosystems.

The main challenges and risks that can be encountered while deploying the AI use cases presented 
in Section 4.9 are:

•	 Digital Literacy Gaps: Low levels of computer and internet literacy hinder the effective use of 
AI-based educational tools.

•	 Unequal Access: Communities without stable internet or sufĔcient devices cannot beneĔt 
from AI-driven educational platforms or apps.

•	 Cultural Relevance: Educational AI tools often lack localized content or language support, 
limiting their impact in diverse settings.

•	 Sustainability and Maintenance: Once external funding ends, ongoing updates and technical 
support for AI-based education programmes may lapse.



77

4.10. An Overview of ArtiĔcial Intelligence Applications in Key 
Areas for Climate Action in Developing Countries

Drawing on insights from the comprehensive set of reviewed studies addressing the critical areas of 
climate change mitigation and adaptation, Table 6 outlines AI applications organized by core topics 
such as climate resilience and adaptation, sustainable energy access and transition, sustainable land 
use and biodiversity, climate Ĕnance and economic resilience, and governance and capacity-building. 
Highlighted areas of particular importance for LDCs and SIDS underscore the unique challenges and 
opportunities these regions face in their efforts to combat climate change and achieve SDGs.

Table 6: ArtiĔcial Intelligence applications in  
key areas for climate action in developing countries 

Category Sub-category Details 

Public Health 

Systems 

	Ĳ Vector-borne disease prediction and control using AI 

and local data 

	Ĳ AI-driven heatwave impact mitigation and alert systems 

	Ĳ Air quality monitoring and improvement for urban 

areas 

	Ĳ Healthcare resource allocation optimization 

	Ĳ AI-powered telemedicine for remote areas 

Climate-resilient 

Infrastructure 

	Ĳ AI-assisted vulnerability assessment for high-risk 

infrastructure 

	Ĳ Designing climate-resilient buildings and roads using AI 
simulations 

	Ĳ Predictive maintenance for critical infrastructure 

	Ĳ Urban planning tools for climate adaptation 

	Ĳ AI-optimized disaster-resistant energy systems 

Climate 

Migration

	Ĳ Climate and natural hazard early warning systems

	Ĳ Early warning on migration for early action and disaster 

risk reduction to human and economic loss

	Ĳ Climate change and natural disaster monitoring

	Ĳ Monitoring and predictive analysis of human mobility and 
migration to address prevention, preparedness, response 
and recovery

Sustainable 

Energy Access 

and Transition 

Renewable 

Energy 

Integration 

	Ĳ AI-optimized microgrid systems for rural electriĔcation 

	Ĳ Solar and wind resource assessment using satellite data and 
ML 

	Ĳ Energy demand prediction for grid stability 

	Ĳ Smart energy storage management 

	Ĳ AI-driven demand-side management in energy-scarce 

contexts 
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Table 6 (continued): ArtiĔcial Intelligence applications  
in key areas for climate action in developing countries 

Category Sub-category Details 

Energy 

EfĔciency 
	Ĳ Building energy management systems for tropical climates 

	Ĳ Industrial process optimization for key industries 

	Ĳ Smart city energy solutions for urban areas 

	Ĳ AI-powered improved cookstove technologies 

	Ĳ Energy-efĔcient transportation for urban centres 

Clean Technology 

Localization 

	Ĳ AI-assisted adaptation of clean technologies to local 

needs 

	Ĳ Supply chain optimization for local manufacturing 

	Ĳ AI-driven technology needs assessment 

	Ĳ Skill development using AI-enhanced learning platforms 

	Ĳ AI tools for local innovation ecosystems 

Sustainable 

Land Use and 

Biodiversity 

Deforestation 

Prevention and 

Reforestation 

	Ĳ Real-time satellite-based forest monitoring and alert 

systems 

	Ĳ AI-driven reforestation planning 

	Ĳ Illegal logging detection with drone imagery and ML 

	Ĳ Community-based forest management tools 

	Ĳ Agroforestry optimization for small-scale farmers 

Biodiversity 

Conservation

	Ĳ Species distribution modelling under climate change 

	Ĳ AI-powered acoustic monitoring systems 

	Ĳ Ecosystem health monitoring with remote sensing and 

ML 

	Ĳ Wildlife corridor planning with climate projections 

	Ĳ AI-assisted marine ecosystem management 

Sustainable 

Agriculture 

and Land 

Management

	Ĳ AI-powered precision agriculture tools 

	Ĳ Soil health monitoring with low-cost sensors 

	Ĳ Crop rotation and intercropping optimization 

	Ĳ Sustainable livestock management in arid regions 

	Ĳ AI-assisted erosion control and land restoration planning 

Climate Finance 

and Economic 

Resilience 

Access to Climate 

Finance 

	Ĳ AI-driven project proposal development and funding 

matching 

	Ĳ Climate risk assessment tools for vulnerable sectors 

	Ĳ AI-enhanced monitoring of climate project outcomes 

	Ĳ Blockchain-based systems for climate Ĕnance tracking 

	Ĳ AI-powered microinsurance solutions 



79

Table 6 (continued): ArtiĔcial Intelligence applications  
in key areas for climate action in developing countries 

Category Sub-category Details 

Economic 

DiversiĔcation 
	Ĳ AI-assisted market analysis for climate-resilient industries 

	Ĳ Skills matching platforms for green job transitions 

	Ĳ Supply chain resilience planning tools 

	Ĳ Circular economy optimization 

	Ĳ AI-powered eco-tourism development planning 

Disaster Risk 

Financing 

	Ĳ AI-enhanced parametric insurance models 

	Ĳ Automated damage assessment tools using satellite 

imagery 

	Ĳ Risk pooling mechanisms optimization 

	Ĳ Early warning systems linked to automatic payouts 

	Ĳ AI-enhanced catastrophe modelling for data-scarce 
environments 

Governance 

and Capacity-

building 

Climate Data 

Management and 

Analytics 

	Ĳ Low-cost, AI-enabled sensor networks for 

environmental monitoring 

	Ĳ Data quality improvement techniques 

	Ĳ AI-powered climate services for local decision-makers 

	Ĳ Participatory sensing platforms for community-level data 
collection 

	Ĳ Knowledge management systems for South–South 

learning 

Policy Support 

and Decision-

making 

	Ĳ Climate policy impact simulation tools 

	Ĳ Multi-criteria decision analysis systems 

	Ĳ AI-assisted stakeholder engagement tools 

	Ĳ Compliance monitoring systems 

	Ĳ AI-supported development and tracking of NDCs 

Technology 

Transfer and 

Localization 

	Ĳ AI-driven technology needs assessment and matching 

	Ĳ South–South cooperation platforms 

	Ĳ Localized capacity-building programmes 

	Ĳ AI solutions for rapid prototyping 

	Ĳ Intellectual property management tools for climate 
technologies 

Ethical AI and 

Digital Inclusion

	Ĳ AI solutions optimized for low-resource environments 

	Ĳ Tools for identifying and mitigating AI bias 

	Ĳ Data privacy and security frameworks 

	Ĳ Gender-responsive AI systems 

	Ĳ AI governance frameworks for LDCs and SIDS 
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5. ArtiĔcial Intelligence  
for the Implementation  
of the Technology Mechanism  
Joint Work Programme and Technology 
Needs Assessment Outcomes

The potential of AI to bolster climate action strategies is outlined in the Technology Mechanism Joint 
Work Programme (2023–2027) and TNAs outcomes for SIDS and LDCs. This section reviews the 
thematic areas covered by the aforementioned framework and identiĔes opportunities where AI-
powered solutions can enhance their implementation. 

The #AI4ClimateAction Initiative is strategically aligned with the Technology Mechanism Joint 
Work Programme, highlighting the collaborative efforts of the TEC and the CTCN. The initiative 
emphasizes six priority areas: national systems of innovation, water-energy-food systems, energy 
systems, buildings and resilient infrastructure, business and industry, and technology needs 
assessments. Each of these areas is central to addressing the intersection of AI and climate action, 
focusing on both mitigation and adaptation strategies.

The initiative also directly supports the rolling work plan of the TEC (2023–2027) and the CTCN 
Programme of Work (2023–2027), which outline comprehensive strategies for advancing climate 
technologies in developing countries, with particular attention to LDCs and SIDS. Through these 
work plans, the #AI4ClimateAction Initiative will guide the development and deployment of AI 
technologies that align with global climate goals, ensuring that they are scalable, context-speciĔc, 
and inclusive of local needs and conditions.

More speciĔcally, activities under the #AI4ClimateAction Initiative are designed to align with 
the TEC objectives of enhancing innovation, scaling up technology transfer, and providing policy 
recommendations to foster the effective deployment of climate technologies. The Initiative will 
support capacity-building, facilitate knowledge sharing, and contribute to policy development, 
helping countries integrate AI into their national climate strategies.
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The joint work with the CTCN further strengthens this effort by focusing on technology deployment 
and technical assistance, offering a pathway to practical implementation in countries that need it 
most. This integration ensures that AI applications are not only technologically advanced but are also 
socially and environmentally sustainable, helping to bridge the gap between technology innovation 
and on-the-ground impact in climate-vulnerable regions.

By effectively utilizing AI within these focus areas, the #AI4ClimateAction Initiative aims to accelerate 
progress towards the Sustainable Development Goals (SDGs), with special emphasis on SDG 13 
(Climate Action), while also aligning with the broader objectives set forth by the Paris Agreement. 

By drawing on insights from Section 4, which explores AI applications across various domains of 
climate action, the following subsections highlight the relevant thematic areas.

5.1. ArtiĔcial Intelligence for the Implementation of the 
Technology Mechanism Joint Work Programme (2023–2027)

The Technology Mechanism Joint Work Programme outlines strategic priorities and key thematic 
areas where AI can play an important role in enhancing climate resilience and sustainability in 
developing regions. Based on the Ĕndings of Section 4, the following sub-chapters detail how AI-
powered solutions can support these initiatives and bolster their implementation.

5.1.1. National Systems of Innovation

AI systems can advance National Innovation Systems (NIS) by facilitating more efĔcient and effective 
research, development, and deployment of new technologies tailored to local climate challenges. 

AI itself reĕects as a co-evolution of corporate and NIS. Lundvall and Rikap (2022) evaluated 
China’s progress in AI and underscored the co-evolution of corporate innovation systems and 
China’s national innovation system. Furthermore, Kouakou and Szego (2024) found that higher 
NIS performance enhances AI integration, suggesting that policies aimed at improving NIS 
performance can positively impact the integration of AI technologies in innovation activities. Key 
dimensions of NIS performance, such as technological diversiĔcation, knowledge localization, and 
originality, signiĔcantly boost AI integration, showing similar marginal effects. Moreover, the study 
highlighted an inverted-U shaped relationship between the cycle time of technologies and the 
level of AI integration in innovation activities.

Developing countries can improve their innovation ecosystems, foster collaboration among research 
institutions and industries, and streamline the commercialization of new technologies. Strengthening 
national innovation systems is of high relevance for developing countries, particularly LDCs and 
SIDS, to create their own AI solutions. Relying solely on importing AI applications from the developed 
countries can lead to increased debt and dependency, which can be detrimental to their economic 
stability and sovereignty. Developing indigenous AI capabilities allows LDCs and SIDS to reduce their 
reliance on foreign technologies, which often come with high costs and can exacerbate national debt. 
These countries can develop cost-effective and contextually relevant AI solutions tailored to their 
speciĔc needs and challenges by investing in local innovation and research. This approach promotes 
economic independence and sustainability, fostering a more resilient and self-sufĔcient economy.

AI applications designed in the developed countries may not always be suitable for the unique socio-
economic and environmental conditions of LDCs and SIDS. Local innovation systems can create AI 
solutions that are better suited to addressing speciĔc issues such as agricultural productivity, climate 
resilience, healthcare, and disaster management. These countries can ensure that the solutions are 
more effective and impactful by focusing on locally relevant AI technologies.
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Investing in national innovation systems also involves building local capacity and expertise in AI 
and related Ĕelds. This investment can lead to a more skilled workforce capable of developing, 
implementing, and maintaining AI systems. Moreover, it encourages knowledge transfer and fosters 
a culture of innovation and technological advancement. Educational institutions and research centres 
play a role in this process, offering training and development programmes to nurture local talent.

Developing home-grown AI solutions can create signiĔcant economic opportunities and jobs within 
LDCs and SIDS. This development can stimulate the local economy, providing employment in 
research, development, implementation, and maintenance of AI technologies. It can also lead to the 
growth of tech start-ups and industries, further enhancing economic diversiĔcation and resilience.

By developing their own AI solutions, LDCs and SIDS can help bridge the digital divide that often 
exists between developed and developing countries. Local innovation can lead to more affordable 
and accessible technologies, ensuring that a larger portion of the population can beneĔt from AI 
advancements. This inclusivity is crucial for achieving broader social and economic development goals.

However, there are challenges in building robust national innovation systems, including limited Ĕnancial 
resources, lack of infrastructure, and insufĔcient technical expertise. International cooperation and 
support from developed countries, international organizations, and private sector stakeholders 
can support in addressing these challenges. Initiatives such as technology transfer, funding for 
research and development, and collaborative projects can help build the necessary infrastructure 
and capabilities.
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5.1.2. Water-Energy-Food Systems

AI-powered solutions can address the interconnected challenges of water-energy-food systems by 
optimizing resource use and improving efĔciency.

Indeed, the interconnected nature of water-energy-food systems demands integrated approaches 
facilitated by AI. Advanced algorithms and sensor networks enable real-time monitoring and 
predictive analytics, optimizing resource management and enhancing resilience against climate-
induced stresses. Case studies from developing countries underscore successful implementations of 
AI in enhancing agricultural productivity, sustainability practices, and water management strategies.

5.1.3. Energy Systems

AI has the potential to transform energy systems by improving efĔciency and reliability in production, 
distribution, and consumption, while promoting renewable technologies. EfĔcient energy systems 
are crucial for sustainable development. AI enables predictive maintenance, optimizes energy 
distribution, and integrates renewable sources. By forecasting weather patterns, AI can enhance the 
operation of wind, solar, and thermal energy, maximizing output and grid stability. It also monitors 
energy grids to detect anomalies, prevent outages, and balance supply and demand in real time. 
AI-driven smart grids facilitate the integration of distributed resources, fostering a decentralized 
and resilient energy system. Additionally, case studies highlight AI’s effectiveness in boosting energy 
efĔciency and lowering GHG emissions in developing countries.

5.1.4. Buildings and Resilient Infrastructure

By leveraging AI applications in building management systems, signiĔcant improvements can be 
made in energy efĔciency, structural resilience, and maintenance processes, all of which support 
climate-resilient infrastructure development.

Energy efĔciency and building management: AI systems optimize various aspects of building 
management, including heating, ventilation, air conditioning (HVAC), lighting, and other operational 
systems. By analysing real-time data, they can adjust these systems to reduce energy consumption 
and enhance occupant comfort. For instance, they can predict the optimal times to heat or cool a 
building based on weather forecasts and usage patterns, leading to substantial energy savings.

Predictive maintenance: AI-driven predictive maintenance is another key application. AI systems 
can predict potential failures before they occur, allowing for pre-emptive repairs by continuously 
monitoring the health of infrastructure assets. This extends the lifespan of assets and reduces 
maintenance costs and prevents unexpected downtime. Predictive maintenance uses data from 
various sensors and historical performance records to identify signs of wear and tear, ensuring  
timely interventions.

Resilient infrastructure design and construction: AI systems support the design and construction 
of resilient infrastructure by analysing environmental data and simulating the impacts of various 
hazards, such as ĕoods, earthquakes, and extreme weather events. These simulations help engineers 
and architects design buildings and infrastructure that can withstand such events, thereby enhancing 
resilience. AI systems can model different scenarios and their potential impacts, providing valuable 
insights that inform better disaster preparedness strategies and building practices.

Sustainability: AI systems contribute to sustainability in the construction and operation of buildings 
by promoting the use of eco-friendly materials and energy-efĔcient technologies. They can assess 
the environmental impact of different building materials and construction methods, recommending 
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the most sustainable options. During the operational phase, they continuously optimize energy and 
resource use, contributing to lower carbon footprints and more sustainable living environments.

5.1.5. Business and Industry

AI-powered analytics help minimize environmental footprints, optimize supply chains, and meet 
regulatory standards, leading to lower costs and improved innovation. In business operations, AI 
automates routine tasks, analyses large datasets for insights, and optimizes logistics, resulting in 
reduced errors and better decision-making. It aids in demand forecasting, inventory management, 
and waste reduction, enhancing service delivery. In manufacturing, AI can enhance production 
through predictive maintenance, which anticipates equipment failures, and real-time quality control 
that identiĔes defects, ensuring consistent product quality. Data analytics and machine learning 
further optimize production schedules and resource allocation, improving efĔciency and reducing 
energy consumption. 

5.1.6. Emerging and Transformational Adaptation Technologies

Emerging adaptation technologies require innovative approaches driven by AI to effectively mitigate 
the evolving risks and impacts of climate change and other global challenges. AI technologies offer 
innovative solutions for climate adaptation, signiĔcantly enhancing adaptive capacity and resilience 
across various domains.

AI systems play a critical role in improving early warning systems by analysing extensive environmental 
data to predict extreme weather events and issue timely alerts to vulnerable communities. This 
predictive capability is instrumental in minimizing the human and economic toll of climate-related 
disasters, enabling proactive measures and swift responses.

In ecosystem monitoring and nature-based solutions, AI systems optimize site selection and monitor 
project progress in initiatives such as reforestation and wetland restoration. By enhancing ecosystem 
resilience and promoting carbon sequestration and biodiversity conservation, these AI-driven 
interventions contribute signiĔcantly to sustainable environmental management.

Moreover, AI-driven innovation facilitates the development of new technologies resilient to climate 
impacts. These advancements bolster infrastructure durability but also promote sustainable 
practices essential for long-term adaptation and mitigation strategies. AI systems contribute to 
building climate-resilient communities and enhancing overall societal resilience by fostering the 
adoption of resilient technologies.

Furthermore, AI systems empower community engagement by facilitating participation and 
awareness through educational tools. These initiatives empower local populations to actively engage 
in climate adaptation efforts, fostering a sense of ownership and collective action towards building 
resilient communities.

In terms of policy and governance, AI systems support evidence-based policymaking by analysing 
comprehensive datasets on climate impacts, adaptation strategies, and societal vulnerabilities. This 
analytical capability aids governments in developing effective climate policies and regulations that 
address local challenges and promote SDGs.

Overall, AI’s integration into emerging adaptation technologies underscores its instrumental role 
in advancing climate resilience strategies. Developing countries can leverage AI’s capabilities to 
enhance their resilience to climate change impacts while fostering sustainable development and 
environmental stewardship.



85

In summary, AI-powered solutions offer signiĔcant potential to support the implementation of the 
Technology Mechanism Joint Work Programme across various thematic areas. From enhancing 
NSI and optimizing water-energy-food systems to revolutionizing energy systems, buildings, and 
infrastructure, AI technology can drive efĔciency, sustainability, and resilience. It can play a central 
role in achieving the objectives of the joint work programme and advancing the global goals of 
sustainable development by addressing the unique challenges and opportunities in business and 
industry, as well as fostering the development of emerging adaptation technologies.

5.2. The Role of the CTCN in Technical Assistance and 
Capacity-building-Projects 

The CTCN has already initiated several technical assistance and capacity-building projects that 
align with AI’s potential. It has been actively supporting countries in deploying digital technologies 
and innovative solutions to address climate change challenges. By facilitating the exploration and 
integration of emerging digital tools, including AI and IoT, CTCN assists countries in building resilience 
and enhancing climate adaptation efforts. Table 7 showcases examples of CTCN’s technical 
assistance initiatives across various countries, highlighting the outcomes and impacts of these digital 
interventions in diverse climate contexts (CTCN, 2023).

Table 7: Examples of CTCN technical assistance initiatives  
on emerging digital technologies for climate action 

Examples of the CTCN 

Technical Assistance

Country Outcome and Impacts

Exploring emerging digital 
technologies and piloting 
digital tools: CTCN supports 
countries in exploring 
the climate potential of 
emerging technologies such 
as AI, IoT, cloud computing, 
blockchain, and open data, 
while developing and piloting 
locally-adapted digital 
solutions to drive climate 
adaptation and increase 
resilience in communities.

Cambodia: Climate risk assessment for subnational adaptation and 
establishment of a local climate information system (LISA) for climate 
change adaptation. 

Eswatini: Strengthening the National Disaster Management Agency’s 
(NDMA) application of UAV and remote sensing technology for vulnerability 
assessments and response planning. 

Georgia: Building up integrated monitoring and early warning forest Ĕres 
detection systems in the Borjomi-Kharagauli National Park by innovative 
remote sensing tools. 

Nepal: Customized weather and climate information system for climate-
resilient agriculture. 

Samoa: Development of a framework and methodology to measure carbon 
sinks from the forestry sector using Earth observation. 

South Africa: Tree monitoring for climate adaptation in the City of 
Mbombela. 

Sudan: Soil erosion valuation to support climate-resilient agriculture and 
food security.
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CTCN’s technical assistance efforts have laid a foundation for digitalization in climate action, 
incorporating various innovative tools and platforms. While AI has not yet been a primary focus within 
most of these projects, elements related to AI, such as ML for predictive analytics and the use of IoT 
for real-time data collection, have been integrated. These aspects represent a starting point that 
could be expanded to include more AI-driven applications explicitly. Future initiatives could harness 
AI’s potential more strategically to support comprehensive climate action, leveraging its ability to 
process vast amounts of data, improve decision-making, and optimize climate-related interventions.

The existing groundwork laid by the CTCN through its digitalization efforts creates promising 
opportunities for the integration of AI into climate action in developing countries. CTCN can 
signiĔcantly advance climate resilience and adaptation strategies in LDCs and SIDS by enhancing 
current projects with more AI-driven tools and technologies. Expanding these initiatives will be crucial 
for scaling AI’s role in tackling the diverse and evolving challenges posed by climate change globally.

Initiatives like CTCN’s capacity-building programmes aim to support the adoption of AI in climate 
technology by providing training and resources to local stakeholders. These programmes also offer 
technical assistance, such as developing digital platforms for climate data management and early 
warning systems powered by AI. Additionally, CTCN has facilitated technical assistance projects 
focused on integrating digital tools into climate adaptation and mitigation efforts. For instance, 
AI-driven tools have been developed in collaboration with local governments and institutions to 
enhance agricultural resilience, improve water resource management, and optimize energy systems. 
These efforts align with the objectives of the Technology Mechanism, demonstrating AI’s relevance 
in supporting capacity-building and technical assistance in LDCs and SIDS.

Expanding on these examples highlights how AI applications are already being explored and applied 
within the context of the Technology Mechanism Joint Work Programme. This integration ensures 
that AI is positioned as a key enabler for achieving the technology and capacity-building goals set 
out by the TEC and CTCN, ultimately enhancing the effectiveness and scalability of climate actions 
in developing countries.

5.3. ArtiĔcial Intelligence for the Implementation of 
TNA Outcomes

TNAs provide a road map for technology deployment aligned with national climate priorities. The 
implementation of TNAs is essential for developing countries to identify and prioritize their technology 
needs for effective climate action. These assessments encompass a range of thematic areas, including 
energy, agriculture, water management, infrastructure, and industry, among others. Each TNA 
identiĔes speciĔc technology needs and proposes action plans to integrate these technologies into 
national climate strategies. The main focus is on how AI-powered solutions can support and enhance 
the implementation of TNA outcomes across the following thematic areas, including technology 
action plans and capacity-building initiatives, drawing on insights and Ĕndings from Section 4 of the 
technical paper, which explores AI applications in climate action across diverse domains. Among the 
key opportunities identiĔed, AI-powered solutions can support the implementation of TNA outcomes 
in energy sector, agriculture and food security, water management, infrastructure and resilient 
construction, industry and manufacturing and disaster risk reduction. Effective AI implementation 
aligned with TNA outcomes depends, however, on international cooperation, targeted policy 
frameworks, and strategic investments in digital infrastructure and local expertise.
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5.4. ArtiĔcial Intelligence-powered Solutions Supporting 
Sustainable Development Goals

AI has the potential to accelerate the achievement of SDGs by providing innovative solutions to some 
of the most pressing global challenges. In the context of climate action and sustainable development, 
AI systems can support the implementation of TNA outcomes by enhancing efĔciency, improving 
decision-making, and fostering resilience. An outline of speciĔc SDGs and targets is presented in 
Table 8 where AI-powered solutions can make a substantial impact, demonstrating how AI can be 
strategically leveraged to promote sustainable development and climate resilience. These targets 
were selected based on their direct relevance to climate action, technology needs, and areas where 
AI applications have demonstrated or hold strong potential for impact. 

Table 8: AI-powered solutions aligned with SDG goals and targets  
for promoting sustainable development and climate resilience 

SDG Target AI-powered Solution

SDG 2: Zero 
Hunger

Target 2.3: Double 
the agricultural 
productivity and 
incomes of small-
scale food producers

•	 AI-powered precision agriculture: Using AI to provide 
real-time advice on crop management, pest control, and 
efĔcient irrigation techniques to smallholder farmers, thus 
increasing productivity and sustainability.

SDG 6: Clean 
Water and 
Sanitation

Target 6.4: 
Increase water-
use efĔciency and 
ensure sustainable 
withdrawals and 
supply of fresh water

•	 AI for water management: Utilizing AI to optimize water 
distribution, monitor water quality, and predict water 
scarcity issues, enhancing sustainable water use and 
management.

SDG 7: 
Affordable and 
Clean Energy

Target 7.2: Increase 
the share of 
renewable energy in 
the global energy mix

•	 AI in renewable energy optimization: Implementing AI-
driven systems to optimize the integration and operation 
of renewable energy sources like solar and wind, improving 
efĔciency and reliability.

SDG 9: Industry, 
Innovation, and 
Infrastructure

Target 9.4: Upgrade 
infrastructure and 
retroĔt industries 
to make them 
sustainable, with 
increased resource-
use efĔciency

•	 AI in smart infrastructure: Designing AI-based solutions 
for developing climate-resilient infrastructure, predictive 
maintenance, and optimizing resource use in industries.

SDG 11: 
Sustainable Cities 
and Communities

Target 11.5: Reduce 
the adverse effects 
of natural disasters

•	 AI for disaster risk management: Deploying AI-powered 
early warning systems and decision support tools to 
enhance disaster preparedness and response, minimizing 
the impacts of extreme weather events.
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Table 8 (continued): AI-powered solutions aligned with SDG goals and targets  
for promoting sustainable development and climate resilience 

SDG Target AI-powered Solution

SDG 13: Climate 
Action

Target 13.1: 

Strengthen resilience 
and adaptive capacity 
to climate-related 
hazards and natural 
disasters

•	 AI in climate resilience: Using AI to develop adaptive 
strategies, improve disaster response, and enhance the 
resilience of communities to climate impacts.

SDG 14: Life 
Below Water

Target 14.2: 

Sustainably manage 
and protect 
marine and coastal 
ecosystems

•	 AI for marine ecosystem management: Implementing AI 
technologies to monitor marine biodiversity, predict climate 
impacts on marine life, and support sustainable Ĕsheries 
management.

SDG 15: Life on 
Land

Target 15.1: Ensure 
the conservation 
of terrestrial 
and freshwater 
ecosystems

•	 AI in biodiversity conservation: Utilizing AI to monitor and 
protect biodiversity, manage conservation areas, and 
detect illegal logging and poaching activities.

SDG 17: 
Partnerships for 
the Goals

Target 17.6: Enhance 
international 
cooperation on and 
access to science, 
technology, and 
innovation

•	 AI for global collaboration: Facilitating international 
cooperation and knowledge sharing through AI platforms, 
supporting global climate initiatives, and ensuring equitable 
access to AI technologies.
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6. Risks and Challenges  
of Using AI for Climate Action  
in Developing Countries

Even though the main risks and challenges have been highlighted in each subsection of Section 
4, this section takes a more structured approach by delving deeper into the primary challenges 
and risks associated with the deployment of AI in SIDS and LDCs. The selection of these topics ¬ 
Energy and Water Consumption, Data Security, Digital Divide, Biases, and Youth Misrepresentation 
– is based on their criticality to AI adoption in these contexts. Energy and water consumption 
are particularly pressing due to infrastructure constraints in SIDS and LDCs, where high resource 
demands could limit AI deployment. Data security was prioritized over data availability due to the 
heightened vulnerability of digital infrastructures in these regions. Many LDCs and SIDS lack strong 
data protection policies, cybersecurity frameworks, and institutional capacity to manage digital risks, 
making AI systems particularly susceptible to data breaches, cyber attacks, and manipulation. These 
vulnerabilities not only threaten sensitive information but can also undermine trust in AI-driven 
climate initiatives, hindering adoption and scalability. The digital divide remains a major obstacle to 
AI accessibility, affecting equitable participation in AI-driven climate solutions. Biases in AI models 
disproportionately affect marginalized communities, reinforcing structural inequalities. Lastly, youth 
misrepresentation is crucial given the demographic trends in many LDCs, where young populations 
play a pivotal role in future innovation but face systemic exclusion from decision-making, Ĕnancing, 
and capacity-building opportunities. These Ĕve dimensions, therefore, represent key barriers that 
require targeted interventions to ensure inclusive and responsible AI deployment in climate action.

6.1. Energy and Water Consumption

AI systems, particularly high-computation models, require signiĔcant amounts of energy for training 
and operation, and in many LDCs and SIDS, energy resources are already constrained or heavily 
reliant on fossil fuels. Additionally, water consumption is a key sustainability concern, as cooling AI 
data centres and infrastructure can strain limited freshwater supplies, particularly in water-scarce 
island nations. 
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The life cycle of AI technologies – including their development, deployment, use, application, 
maintenance, and disposal – systematically stresses energy supplies and contributes to GHG 
emissions. These impacts are categorized into direct, indirect, rebound, and systemic effects, which 
pose varied risks to environmental sustainability (Bibri et al., 2023). Direct effects include not only 
the energy-intensive processes involved in training and running AI models, which contribute to GHG 
emissions, but also the energy demands of data storage, cooling systems, and data transmission 
associated with these technologies. They are especially signiĔcant when AI relies on data centres 
powered by non-renewable energy sources.

Indirect effects involve the secondary impacts of widespread AI adoption, such as driving up 
overall electricity demand, increasing water usage for cooling systems, and accelerating the 
depletion of natural resources. The indirect effects also include the increased demand for the 
production of hardware components and infrastructures that support AI, which require signiĔcant 
energy and resources.

Rebound effects occur when efĔciency improvements or innovations inadvertently lead to higher 
overall consumption, counteracting intended energy savings. In the case of AI, enhanced model 
performance and efĔciency can increase demand, thereby expanding AI applications in ways that 
raise total resource consumption.

Systemic effects go beyond these direct, indirect, and rebound consequences by capturing the 
broader, interconnected, and long-term impacts of AI technologies on the environment and society 
as a whole. Systemic effects can involve the following:

•	 The way AI-driven processes inĕuence societal behaviours, such as increased reliance on 
energy-intensive technologies.

•	 The cumulative and compounding impacts of widespread AI adoption on infrastructure, 
resource extraction, and waste production.

•	 The creation of feedback loops where AI ecosystems might reinforce unsustainable practices, 
thereby exacerbating environmental degradation.

In the context of AI and climate change, systemic effects highlight the interconnected and cascading 
consequences of AI adoption across multiple layers of society and the environment. These effects 
are often difĔcult to predict and can lead to unintended ripple effects that extend beyond immediate 
energy consumption. Addressing these challenges requires comprehensive strategies that integrate 
sustainable development, optimize resource use, and ensure responsible AI governance to mitigate 
these cascading impacts. Recognizing these challenges and proactively addressing them enables 
society to leverage AI in paving the way for a sustainable future. In this context, proactive measures 
include accelerating the decarbonization of electric grids, fostering markets for low-carbon 
materials, and promoting the development of energy-efĔcient hardware. Optimizing AI algorithms 
and encouraging sustainable practices in AI development are also critical steps towards reducing the 
environmental footprint of AI. 

The International Telecommunication Union (ITU, 2024b; 2024c) underscores the impact of the 
information and communications technology (ICT) sector on environmental sustainability, with a 
special emphasis on the role of AI, as part of its Green Digital Action Initiative. While the ICT sector 
provides unparalleled opportunities for advancing sustainability, such as optimizing energy systems, 
implementing smart grids, enhancing industrial efĔciency, and offering valuable insights into climate 
change patterns, it also poses substantial environmental challenges, including increased energy and 
water consumption, GHG emissions, and the demand for critical raw materials. The Green Digital 
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Action initiative focuses particularly on AI’s impact in this broader context emphasizing the need to 
address the environmental implications of AI to ensure sustainable AI development by enhancing the 
energy efĔciency of AI systems and promoting the use of renewable energy sources for powering 
data centres. 

6.1.1. Quantify the ArtiĔcial Intelligence Carbon Footprint

AI depends on data centres that require signiĔcant energy to compute, analyse, and categorize data 
(Brevini et al, 2021). Training DL models requires substantial computation time and resources, as 
they learn a comprehensive representation for better data analysis, with costs increasing further if 
they engage in continuous learning. Anthony et al. (2020) introduced Carbontracker, a tool designed 
to monitor and forecast the carbon footprint associated with training DL models. The tool aims 
to provide insights into the environmental impact of AI training processes by accurately tracking 
energy consumption and resulting carbon emissions (Anthony et al., 2020). A study published in 
2019 attempted for the Ĕrst time to quantify the energy consumption of running AI programmes and 
found that a typical AI training model in NLP can emit over 284 tonnes of CO2 equivalent (Strubell 
et al., 2019).

With the growing adoption of AI, the energy consumption of data centres is increasingly under 
scrutiny, highlighting the need for more accurate data collection and improved assessment practices. 
The report published by IEA (2024a) points out signiĔcant uncertainties regarding the electricity 
demand of data centres, inĕuenced by factors like the pace of AI deployment, the variety of AI 
applications, and the potential for advances in energy efĔciency. As stated in the executive summary 
of the report (IEA, 2024a), electricity consumption from data centres and AI systems is projected to 
double by 2026. Today, data centres account for around 1% of global electricity consumption, and 
annual electricity consumption from data centres globally is about half of the electricity consumption 
from household IT appliances, like computers, phones and TVs. By 2026, their total electricity 
consumption could surpass 1000 terawatt-hours (TWh). However, when considered in a broader 
context of total electricity consumption growth globally, the contribution of data centres is modest. 
Global aggregate electricity demand grows by 6750 TWh by 2030. While growing digitalization, 
including the rise of AI, is one factor, continued economic growth, electric vehicles, air conditioners, 
and the rising importance of electricity-intensive manufacturing are all bigger drivers. 

At the same time, the IEA emphasizes that the increasing integration of AI into data centre operations 
could contribute both to higher energy demand and potential efĔciency gains. Advancements in 
energy-efĔcient cooling technologies, AI-driven energy optimization, and workload distribution 
strategies have been identiĔed as crucial factors in mitigating consumption increases. Furthermore, 
regional disparities in data centre electricity demand remain an area of concern, with certain locations 
experiencing greater grid strain due to high concentrations of AI-driven workloads. To mitigate this 
substantial rise in energy consumption, updated regulations and technological advancements, 
especially focused on efĔciency improvements, will be essential. Additionally, the IEA underscores 
the importance of enhancing monitoring mechanisms to reĔne projections and enable proactive 
energy planning. To accurately track historical developments and better predict future trends, 
enhanced monitoring and detailed electricity usage data for the data centre industry will be critical 
(EAI, 2024a).
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Numerous studies have assessed the energy consumption required for producing and training 
GenAI models. Researchers estimated that the development of GPT-3 consumed approximately 
1287 megawatt hours of electricity and generated 552 tonnes of CO2 equivalent (Saenko, 2023). 
In addition to the direct energy consumption, there are signiĔcant environmental costs linked to the 
production and operation of AI models. These include the extraction of rare minerals for graphics 
processing units (GPUs) and the vast amounts of water required to cool large data centres (Luccioni, 
2023). Data centres, which are integral to AI operations, consume massive amounts of both energy 
and water, primarily for air conditioning systems. Notably, training the LaMDA language model is 
estimated to have used around one million litres of water (Dolby, 2023). Moreover, there are location-
speciĔc variables that inĕuence the energy and water usage of LLMs. For example, Microsoft 
reported that its data centres in Asia are signiĔcantly less water-efĔcient than those in the Americas 
(Dolby, 2023). Seasonal factors also play a role, as hotter summers lead to greater water consumption 
due to the increased need for cooling and higher evaporation rates (Dolby, 2023). These studies 
collectively highlight the multifaceted environmental impact of GenAI models, extending beyond 
energy consumption to include broader resource use and location-dependent inefĔciencies. 

Researchers estimate that training a model like GPT-4 generates approximately 300 tonnes of 
carbon for its entire training process (Kumar and Davenport, 2023; Deeb and Garel-Frantzen, 
2023). As AI technology advances, this carbon footprint is expected to grow because the 
increasing complexity of models and the larger datasets they require will demand even more 
energy (An et al., 2023). On the user side, a GenAI query has been found to produce four to Ĕve 
times more carbon emissions than a typical Google search or other search engine query (Saenko, 
2023). Although the energy consumption per query is less than that of training the model, the 
sheer volume of queries contributes to signiĔcant energy use, accounting for up to 90% of the 
total energy consumed by GenAI (Kumar and Davenport, 2023). In addition to energy demands, 
GenAI models also have notable water consumption impacts. For instance, it is estimated that 
interacting with ChatGPT for 20 to 50 queries could require the equivalent of a 500-millilitre bottle 
of water, depending on where the electricity powering the interaction is generated (Dolby, 2023). 
Overall, the electricity demand for training LLMs like GPT-4 and operating AI systems can lead to 
substantial carbon emissions, depending on the energy mix of the data centres involved. Notably 
cutting-edge, rapidly evolving developments in ultra-low-power consumptions integrated circuits 
hold a potential to scale down both the data centres and computational energy of AI algorithms.

According to Luers et al. (2024), AI currently contributes a small fraction of global GHG emissions – 
approximately 0.01% – and even with rapid growth rates, its operational footprint is not expected to 
be a signiĔcant contributor to GHG emissions in the foreseeable future. The sector’s rapid evolution 
makes it nearly impossible to reliably predict the energy and resource implications of AI technologies 
beyond a few years. Some studies simply extrapolate past trends in AI electricity use, but these 
projections often overlook critical social, economic, and technological factors, leading to signiĔcant 
forecasting errors (Masanet et al., 2020). Moreover, taking an overly simplistic view of the indirect 
emissions linked to AI risks underestimating its potential to drive climate solution breakthroughs, such 
as rapidly advancing battery technology or optimizing renewable energy systems (Luers et al., 2024).

To accurately assess AI’s environmental impact, there is a need for holistic scenarios that explore 
alternative futures, considering factors like resource use, technological advancements, and economic 
shifts (Luers et al.,2024). 
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6.1.2. Green Computing and Alternatives

The ongoing research in green AI, or green computing generally, is dedicated to creating AI 
technologies that are environmentally sustainable. This burgeoning Ĕeld aims to reduce the carbon 
footprint and energy consumption associated with AI development and deployment (Lannelongue 
et al., 2021; Verdecchia et al., 2022; Wheeldon et al., 2020; Yokoyama et al., 2023). Researchers strive 
to minimize the environmental impact of AI systems by optimizing algorithms, enhancing hardware 
efĔciency, and improving data centre operations as AI systems can achieve similar performance with 
lower energy use. Green AI initiatives often include developing metrics and standards to evaluate 
and promote the sustainability of AI technologies (Schwartz et al., 2020; Raman et al., 2024).

From a different perspective, in the rapidly evolving landscape of GenAI, Small Language Models 
(SLMs) are gaining attention as a resource-efĔcient alternative to the traditionally large and energy-
intensive models like LLMs. SLMs offer a more sustainable approach by leveraging fewer parameters, 
which results in reduced computational and energy demands. 

Instead of the trillion-parameter LLMs that consume considerable resources, SLMs are emerging as 
smaller-scale, lightweight models that can leverage energy and compute resources more efĔciently 
for speciĔc, purpose-built functions. This shift is particularly important as AI models become 
increasingly integrated into various sectors where energy efĔciency and accessibility are critical. 

Additionally, in the energy-intensive pre-training phase, even the power savings differential between 
SLMs is signiĔcant. The Llama 2 7B SLM generated 30.22 tCO2EQ of carbon emissions, while the 
larger Llama 2 70B SLM generated a signiĔcantly larger 291.42 tCO2EQ in emissions. This stark 
difference highlights the potential of SLMs to contribute to more sustainable AI practices, especially 
as energy consumption becomes a growing concern in the tech industry. In theory, SLMs may 
eventually be less prone to bias, as they train on smaller, more tightly managed datasets.

Furthermore, software deĔned storage, an emerging technology, enables dynamic scaling of 
memory resources in a virtual (cloud-based) AI infrastructure architecture. This ĕexibility enables 
more efĔcient use of resources, particularly during intensive AI tasks. Once the task is complete, 
these memory resources can be efĔciently scaled down, and physical memory can be spun down 
when larger AI workloads are no longer in operation. This approach, already employed by the SWIFT 
global Ĕnancial system for real-time AI anomaly detection, signiĔcantly reduces data centre power 
consumption in AI applications and offers similar beneĔts for Edge AI use cases.

While AI has the potential to drive signiĔcant advancements in climate action, its deployment in 
developing countries must be carefully managed to avoid exacerbating energy and water resource 
challenges. In many developing countries, including LDCs and SIDS, the growth of data centres 
remains limited, often due to infrastructure constraints and high operational costs. Consequently, a 
signiĔcant portion of AI-related data processing for these regions occurs in data centres located in 
more developed regions, where electricity consumption and water usage are not substantial concerns.



94

6.2. Data Security

Many LDCs and SIDS lack strong data protection policies, cybersecurity frameworks, and institutional 
capacity to manage digital risks. This makes AI systems particularly susceptible to data breaches, 
cyber attacks, and manipulation, which can undermine trust in AI-driven climate initiatives.

Data security is paramount worldwide. Handling large datasets raises signiĔcant privacy and 
cybersecurity concerns – particularly in regions with weak regulatory frameworks – where sensitive 
information can be misused or exposed to cyber threats. AI systems, as all the software, also remain 
vulnerable to data poisoning and other adversarial attacks, underscoring the need for secure data-
handling practices.

Recent studies (Paracha et al., 2024; Rosenberg et al., 2021; Goldblum et al., 2022) discuss critical risks 
like adversarial ML, data poisoning, and backdoor attacks, offering strategies to enhance resilience. 
Implementing comprehensive data protection laws, clear data governance guidelines, and effective 
enforcement mechanisms is vital to ensure public trust and participation in AI initiatives. Moreover, 
as AI applications in climate action integrate diverse datasets, maintaining consistent security and 
privacy standards is essential for safeguarding both the technology and the data it relies on.

AI security management involves adopting measures and practices designed to protect AI systems 
and the data they process from unauthorized access, breaches, and malicious activities. This includes 
threat identiĔcation (Kumar and Kumar, 2023), access control (Song et al., 2023), and security 
awareness and training (Solomon et al., 2022), as well as continuous monitoring and updates to 
security protocols to adapt to emerging threats. Cybersecurity involves protecting digital systems, 
including computers, servers, networks, and related data, from malicious attacks. It safeguards 
internet-connected information and communication systems from malicious attacks and threats (Li 
and Liu, 2021).

Incorporating comprehensive threat identiĔcation methods can help detect potential risks, such 
as data breaches, unauthorized access, adversarial attacks, and insider threats (Rosenberg et al., 
2021; Goldblum et al., 2022), which are critical for maintaining the integrity of AI systems. Moreover, 
implementing robust access control mechanisms ensures that only authorized individuals can 
interact with AI systems and their data, further enhancing security. To achieve this, continuous 
security awareness and training programmes are crucial to equip stakeholders with the knowledge 
to recognize and mitigate security threats. By integrating these security measures, organizations can 
create a resilient AI infrastructure capable of withstanding various threats and ensuring the ethical 
use of AI technologies. Managing and mitigating the potential harms caused by the malicious use of 
AI is a serious concern in the development and deployment of AI technologies.

The impact of AI on cybersecurity is dual-sided, presenting both negative and positive aspects. 
On the positive side, AI-driven automation using ML algorithms has successfully prevented 
attackers from using traditional attack methods on systems. This has enhanced the efĔciency and 
effectiveness of cybersecurity measures, allowing for real-time responses to emerging threats. 
Integrating cybersecurity with ML encompasses two main aspects: ensuring the cybersecurity of 
environments where ML is deployed and leveraging ML to enhance cybersecurity measures (Wazid 
et al., 2022). This integration offers multiple beneĔts, such as providing increased security for ML 
models, improving the performance of cybersecurity methods, and enabling the effective detection 
of zero-day attacks through the use of techniques such as anomaly detection. Jada and Mayayise 
(2024) found that while AI can inĕuence cybersecurity across its entire life cycle, providing advantages 
such as automation, threat intelligence, and enhanced cyber defense, it can introduce challenges like 
adversarial attacks and the necessity for high-quality data, which could result in inefĔciencies. Liu 
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and Zhang (2023) found that employing DL technology for computer network security detection 
enhances security performance. This approach is characterized by high safety performance, a high 
detection rate, and a low false alarm rate. It enables timely monitoring of network vulnerabilities and 
effectively detects security attacks on the computer network. 

Within the context of AI Trust, Risk, and Security Management (AI TRiSM), data security holds 
particular signiĔcance. The increasing reliance on AI systems brings emerging concerns related 
to risk, trust, and security. The AI TRiSM framework is a theoretical approach to implementing 
AI in organizations and (Habbal et al., 2024) included Ĕve illustrative scenarios that highlight its 
effectiveness. 

6.3. Digital Divide and Equitable Access to ArtiĔcial 
Intelligence for Climate Action

In SIDS and LDCs access to electricity and ICT infrastructure is often limited, restricting the 
ability of end-users to beneĔt from AI solutions and hindering the local AI ecosystem to develop 
relevant localized applications. In many rural and remote areas, unreliable electricity and poor 
internet connectivity can make it difĔcult to deploy and maintain AI technologies. For example, 
farmers in remote areas may not be able to access AI-driven agricultural advice due to lack of 
internet access, limiting their ability to beneĔt from advanced farming techniques. Nevertheless, 
in developing countries, satellite internet emerges as a promising solution to bridging the digital 
divide, especially in rural and remote areas where traditional broadband infrastructure is either 
lacking or entirely non-existent.

Since the emergence of ICT, the digital divide has highlighted signiĔcant disparities in access to 
and use of digital resources and technologies among different user groups or populations. This 
divide, originally framed around access to and use of computers and the internet, has evolved 
with technological advancements. The advent of AI exacerbates these inequalities due to the high 
demand for computational resources, context-speciĔc AI training and testing data, access to pre-
trained models, specialized knowledge, and advanced infrastructure, which are often concentrated 
in more developed regions and among more privileged groups. In this context, infrastructure 
entails the foundational systems and services required to deploy and support AI technologies 
effectively. This includes physical hardware such as data centres, network connectivity, and cloud 
computing resources needed for processing large datasets and running complex AI models. It 
also encompasses software infrastructure like platforms for AI development, databases, and 
APIs, as well as organizational structures that support AI operations, such as technical support and 
maintenance teams.

The prevailing economic landscape of machine learning (ML) as a technological domain suggests 
a trend towards a natural monopoly, presenting complex challenges and implications across various 
sectors. Research has addressed how this concentration within the AI market impacts broader 
dimensions, highlighting the need for a critical reassessment of AI development and deployment 
strategies in the context of global digital equity and local solution generation. Based on the literature, 
some ML-based applications may exhibit the traits of a natural monopoly (Narechania, 2021). This 
market concentration leads to numerous economic, social, and political issues, such as reduced 
innovation and quality, the potential for bias and misinformation, safety risks due to single points of 
failure, and a lack of democratic oversight and digital sovereignty. Moreover, market concentration 
and the current structure of the AI (research) ecosystem drive an AI monoculture, which incentivizes 
the development of marketable and proĔtable AI systems, without considering the public interest 
and maximizing society’s wellbeing (Ahmed et al., 2023). This pertains speciĔcally to Ĕelds where 
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market gaps and market failures prevail, such as last-mile services in global majority countries. As 
a core feature of policy-making, education, and training programmes for AI and climate change, 
governments should prioritize addressing the global digital divide, which currently leaves billions 
worldwide without internet access (Sandalow et al., 2023) and skilled professionals without the 
opportunity to develop meaningful localized solutions due to prevailing data poverty and the 
compute divide (Besiroglu et al., 2024).

It is particularly important to note that data scarcity greatly affects the efĔcacy of AI-driven climate 
change initiatives, especially in SIDS and LDCs. These regions often face challenges that exacerbate 
the digital divide, affecting their ability to implement advanced AI solutions for climate action. This 
includes fewer weather stations, limited access to advanced satellite imagery, and sparse sensor 
networks, which are key to gathering the comprehensive environmental data needed to train AI 
models, restricted access to global data sets due to high costs or licensing restrictions.

Unequal access to both physical and digital resources is an aspect that remains inadequately explored 
in current literature (Walsh et al., 2020).

6.3.1. Closing the Data Divide

Addressing this gap involves improving data collection infrastructures, including the generation and 
use of disaggregated environmental and demographic data (by gender, age, geographic location 
(rural/urban, coastal/inland), income level or socio-economic status, indigenous identity, etc.), and 
advocating for open data initiatives, as well as fostering international collaborations to democratize 
knowledge transfer and ensure equitable access to AI technologies and climate data. 

These efforts are complemented by training programmes for local personnel, including youth 
stakeholders, in data management and analysis. Furthermore, open data initiatives that promote the 
sharing of climate data enhance accessibility and utility, especially in regions with limited resources. 
Synthetic data generation also plays a role where real data are lacking, enabling the training of more 
adaptable AI models. Moreover, collaborative AI development that integrates input from local 
stakeholders and international experts ensures the creation of tailored solutions that address speciĔc 
regional challenges and enhance climate resilience effectively. Additionally, data-poor contexts can 
especially beneĔt from the development of novel approaches to making AI training more efĔcient 
(Gunasekar et al., 2023) and research focusing on smaller, task-speciĔc models (Varon et al., 2024). 
These advancements are often driven by open-source AI, which has played a role in democratizing 
access to AI tools and enabling innovation, particularly in resource-constrained environments.
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CASE STUDY

CLOSING THE CLIMATE DATA DIVIDE IN DEVELOPING COUNTRIES

Country: LDCs and SIDS

Entities Involved: Microsoft AI for Good Lab, Planet Labs PBC, African 
Development Bank, African Risk Capacity, African Climate Foundation

Brief Description

Access to reliable climate data is essential for governments and decision-makers 
in developing countries to mitigate the worst effects of climate change. Efforts to 
democratize access to climate data align with broader global initiatives to accelerate 
progress towards the 17 Sustainable Development Goals (SDGs), adopted by UN 
member states in 2015 as part of the 2030 Agenda for Sustainable Development. 
High-quality climate data can unlock adaptation and resilience projects, ensuring that 
available resources are directed to areas where they can have the greatest impact, 
both before and in the aftermath of climate-related disasters. However, the developing 
countries face a signiĔcant gap in both reliable climate data and the availability of data 
scientists to analyse and apply it. Research indicates that for every data scientist in 
the developing countries, there are approximately Ĕve in the developed countries, 
creating disparities in the ability to translate climate data into actionable insights. In 
Africa, this gap widens further, with one data scientist for every 14 in the developed 
countries. This imbalance contributes to what has been termed the ‘climate data 
divide’ – a challenge that ongoing initiatives seek to address.

Microsoft is working to help close that climate data divide through the AI for Good 
Lab and new partnerships underway across developing countries to accelerate action. 
The AI for Good Lab applies AI, ML, and statistical modelling to tackle climate-related 
challenges in partnership with leading nonproĔts, research institutions, NGOs, and 
governments as part of its portfolio to help solve humanity’s biggest challenges. By 
offering our technology and expertise, we are helping advance the local development 
of scalable solutions. In 2022, the Lab announced its expansion to Nairobi, Kenya, 
where a team of world-class data scientists is working to improve climate resilience 
across Africa.

Climate Change Mitigation and/or Adaptation Impacts and Results

It is a challenging time for planet Earth and no nation is immune from the risks and 
perils faced by the ongoing impacts of climate change. There is additional complexity 
in that the consequences of this existential threat to our planet’s survival are 
unevenly distributed among the world’s countries, with a greater burden falling on 
the developing countries. The developing countries have contributed far less than 
the developed countries to the actual causes of climate change, yet they have been 
disproportionately impacted by extreme climate events including droughts, ĕoods, 
storms and, heatwaves, which contribute to other problems like food insecurity 
and exacerbate existing challenges like poverty. Between 2008–2018, there were 
2.2 billion people in the developing countries that were under high climate risk.
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In September 2022, a collaboration with Planet Labs PBC and The Nature Conservancy 
led to the development of the Global Renewables Watch – a Ĕrst-of-its-kind living 
atlas designed to map and measure all utility-scale solar and wind installations on 
Earth using AI and satellite imagery. The Global Renewables Watch provides data 
that helps both researchers and policymakers understand current renewable energy 
capacities and assists decision-makers in search of effective options for renewable 
energy development. Access to high-quality data is critical to enabling measurement 
and realization of the SDGs.

Challenges and Lessons Learned Regarding Development and Implementation

Addressing and mitigating the effects of climate change requires collaboration across 
industry, government, academia, and civil society. During initial discussions with 
Kenyan stakeholders on the expansion of climate AI initiatives, it was emphasized 
that an ideal outcome would involve African researchers leading projects that beneĔt 
Africa within Africa. To support this approach, collaborations have been established 
with organizations such as the African Development Bank, African Risk Capacity, and 
the African Climate Foundation, focusing on improving climate resilience through data 
and AI. These partnerships aim to facilitate the generation of additional climate data 
and drive continued research. In addition to these partnerships, cooperation has been 
initiated with the Kenya Red Cross Society, PATH, the Institute for Health Metrics and 
Evaluation (IHME), and the Integrated Food Security Phase ClassiĔcation (IPC) to 
enhance the translation of climate data into actionable insights.

CASE STUDY

EMPIRIC_AI: AI-ENABLED ENSEMBLE PROJECTIONS OF  
CYCLONE RISK FOR HEALTH INFRASTRUCTURE IN PACIFIC  
ISLAND COUNTRIES AND TERRITORIES

Country: PaciĔc Island Countries including Fiji, Tonga, Vanuatu,  
and Solomon Islands

Entities Involved: Dr. Chris Horvat, Dr. Berlin Kafoa, Dr. Craig McClain,  
Dr. Michelle McCrystall, Dr. Liz McLeod, Dr. Eileen Natuzzi, Dr. Subhashni Taylor,  
Dr. Callum Webster

Brief Description

PaciĔc Island Countries (PICs), such as Fiji, Tonga, and the Solomon Islands are 
among the most susceptible to devastating tropical cyclones and climate change 
impacts yet lack robust climate-speciĔc data. The region comprises 10,000 islands 
and atolls, but many of these are too small to be accurately represented in large-scale 
global climate models. As these climate models are used to project future climate 
change demonstrated in IPCC climate assessment reports, the inability to effectively 
represent these islands means that future climate change projections are limited 
across the region.
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Around 10 tropical cyclones form in the South PaciĔc every year. Limited data and 
infrequent storms require the construction of resilient healthcare facilities in PICs. The 
EMPIRIC_AI (EMulation of PaciĔc Island Risk to Infrastructure from Climate) project 
addresses these issues using new statistical modelling and AI techniques. Thousands of 
observationally-constrained synthetic tropical cyclones are tracked using a statistical 
model, and a modiĔed U-net is employed to emulate the pan-PaciĔc impacts of 
these storms. This network allows for a rapid sampling of possible future states and 
developing a statistical range of impacts of tropical cyclones at different hospital sites 
across PICs such as potential number of landfalls, wind, and rainfall. By leveraging 
these data, health governing bodies can make informed decisions regarding future 
healthcare infrastructure planning.

Climate Change Mitigation and Adaptation Impacts

The primary aim of this project is to give site-speciĔc projections of climate change 
impacts on different health facilities across the PaciĔc Island Countries. These insights 
can identify hospital sites at the highest risk from future tropical cyclones and extreme 
weather events and can inform mitigation or adaptation measures that might be 
needed for those speciĔc sites, including preparation for ĕooding events or potential 
relocation of hospital sites to limit continuing climate change impacts on the health 
capacity of each region.

Challenges and Lessons Learned Regarding Development and Implementation

A key challenge in the EMPIRIC_AI project involves navigating the intersecting 
domains of policy, healthcare, climate science, and data science. This multifaceted 
challenge arises because each discipline poses distinct questions and often operates 
with asymmetric knowledge bases. SpeciĔcally, the climate metrics that impact 
individual PaciĔc hospitals are uniquely detailed, and comprehensive qualitative data 
at the sectoral, national, or PaciĔc-wide level is hard to come by. Addressing this issue 
requires a nuanced approach to contextualizing climate data and adapting AI tools 
for stakeholders, which is being tackled through in-depth qualitative surveying and 
collaborative efforts.

Much of the progress made in AI research in recent years was realized thanks to open-source and 
open science practices. Open-source AI, in particular, has played a role in democratizing access 
to cutting-edge tools and frameworks, enabling broader participation in AI development and 
innovation. However, the rapid growth of open-source AI has also led to a complex and sometimes 
chaotic landscape, with numerous projects, standards, and approaches emerging independently. 

In response, new open-source standards and alliances are emerging to bring order to this complexity. 
Organizations such as the Linux Foundation’s LF AI & Data, the Open Neural Network Exchange 
(ONNX), and the AI Open Network are working to establish common frameworks and guidelines that 
promote interoperability, transparency, and collaboration. These efforts are crucial in ensuring that 
open-source AI remains a cohesive and accessible resource, particularly for data-poor contexts where 
proprietary solutions may be out of reach. These initiatives are helping to unlock the full potential of 
AI across diverse applications and settings by fostering a more structured and uniĔed open-source 
ecosystem. Moreover, to strengthen local AI ecosystems and enable skilled professionals to develop 
localized AI solutions, access to open AI training data and open-source models is paramount, in 
addition to reliable infrastructure (Gimpel, 2024). 
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6.3.2. Right to Development 

The digital divide is also intertwined with the gender divide and thus it impairs the right to development 
of vulnerable populations and, at a broader scale, the ability of SIDS and LDCs to fully engage in 
climate action and sustainable development. As AI technologies become increasingly relevant for 
climate mitigation and adaptation, disparities in digital infrastructure and literacy risk excluding 
developing nations from the beneĔts of AI-driven climate solutions.

Bentley et al. (2024) explored the implications of the digital divide on how people interact with AI 
technologies. The authors highlight that unequal access to digital technologies and disparities in 
digital literacy can deepen societal inequities and limit the ability of communities to engage with AI-
powered climate adaptation measures. They introduced the concept of ‘digital conĔdence,’ which 
encompasses awareness, familiarity, and competence in using digital technologies, and surveyed 
303 individuals to assess how these factors inĕuence attitudes towards AI. The study found that 
digital conĔdence is signiĔcantly affected by demographic factors such as gender, age, income, 
and access to technology. Women, older individuals, people with lower incomes, and those with 
less access to digital tools reported lower levels of digital conĔdence. This lack of digital conĔdence 
could hinder participation in AI-based climate resilience initiatives, such as AI-powered early warning 
systems, precision agriculture, and smart water management solutions.

Lutz (2019) addressed inequalities in access to digital technologies, extending this discussion to 
emerging technologies like IoT and AI-powered systems. The author highlights disparities in digital 
skills and technology usage, linking these to new work forms such as the gig economy and the sharing 
economy. In the context of climate action, unequal digital access can also limit participation in global 
carbon markets, AI-driven disaster risk reduction, and climate-smart supply chain management. 
Ensuring digital inclusivity is essential to empower developing nations to harness AI for climate 
adaptation, resilience-building, and sustainable economic transitions.

This is not just about improving technical skills or increasing access to technology, but also about 
gaining control over data and AI governance. This can help prevent scenarios where data from these 
countries are used to feed algorithms that primarily beneĔt companies and economies elsewhere. 
Moreover, developing local AI solutions can stimulate local economies, spur innovation, and provide 
more relevant technological solutions that address local needs effectively. It is important that these 
efforts go beyond just setting up infrastructure. Comprehensive strategies should include developing 
competencies to allow individuals to engage with and beneĔt from AI technologies fully. 

Moreover, public investment in AI infrastructure aimed at public interest projects can increase 
accessibility for communities with lower incomes. Subsidies, public-private partnerships, and 
other innovative Ĕnancial mechanisms can reduce the cost of AI technologies, making them more 
accessible and promoting equitable technological advancements. These multifaceted approaches 
are important for closing the digital divide and enhancing the capacity of communities worldwide to 
leverage AI for sustainable development. Capacity-building programmes are key to ensuring that 
local populations have the knowledge to develop and maintain AI solutions. Training programmes 
for local engineers, data scientists, and policymakers can help build a sustainable ecosystem for AI 
development in developing countries. 

Critical perspectives on this issue suggest examining the intricate layers of how technology is not just 
a tool for progress but also a potential instrument of power that can reinforce or challenge existing 
global inequalities. The dialogue around digital sovereignty and local AI ecosystem development is 
therefore deeply tied to broader discussions about economic independence, cultural integrity, and 
equitable growth within the global technological landscape and thus with the Right to Development. 
In that context, AI governance must ensure that SIDS and LDCs have the agency to implement AI-
driven climate strategies that align with their speciĔc needs and development pathways.



101

6.4. Biases

In the context of AI applications for climate action, it is important to acknowledge the impacts of 
spatial and temporal biases in the training data on algorithmic bias. Spatial biases arise when the 
geographic distribution of the training data is uneven, potentially leading to AI models that perform 
well in certain regions but poorly in others. Temporal biases occur when the training data does not 
adequately capture the variability over time, which can result in models that are less robust to future 
changes or anomalies. These biases can signiĔcantly affect the reliability and fairness of AI predictions 
and interventions, necessitating careful consideration during the model development and training 
phases. For instance, training an AI model to predict urban heat requires careful selection of spatial 
resolution, as a low resolution might average out extreme values in smaller neighbourhoods and 
overlook critical hotspots, while a higher resolution can reveal these peaks but potentially introduce 
noise (McGovern et al., 2022a).

McGovern et al. (2022b) emphasize the critical need for ethical and responsible implementation. It 
dispels the misconception that the environmental sciences are immune to AI’s unintended societal 
impacts, such as those seen in criminal justice and Ĕnance systems. The study presents examples 
showing how AI can introduce similar biases and negative consequences in environmental contexts, 
despite the perceived objectivity of data and algorithms. By stimulating discussion and research, 
the authors aim to prevent the environmental science community from repeating mistakes made in 
other Ĕelds. They advocate for precautionary measures to ensure AI is used responsibly, harnessing 
its potential to address climate and environmental injustices. While focusing on weather and climate, 
the study’s conclusions apply broadly across all areas of environmental science.

Furthermore, bias can exacerbate inequalities if AI systems are not meticulously designed and 
managed, leading to unfair outcomes that disproportionately affect marginalized groups. For 
example, AI-powered climate prediction models may under-represent regions with sparse data, 
leading to inadequate disaster preparedness measures in vulnerable communities. Similarly, biases 
in AI-driven carbon credit markets could disproportionately beneĔt wealthier nations, reinforcing 
existing disparities in global climate Ĕnance. Therefore, ensuring accessible AI technologies involves 
creating tools and systems that are user-friendly and widely available and ideally developed in a co-
creative manner with diverse communities (The Collective Intelligence Project, 2024). 

Promoting climate-speciĔc digital and algorithmic literacy is essential to empower users to engage 
with AI-driven climate applications critically and effectively. For instance, if AI-based early warning 
systems rely on biased training data, they may fail to provide timely alerts to remote or marginalized 
populations, leaving them disproportionately exposed to climate hazards. Unbiased AI outcomes 
are necessary to ensure fairness and equity in climate adaptation and mitigation efforts, which 
requires rigorous testing and validation processes to detect and mitigate biases. Moreover, AI 
system providers must ensure that development is conducted with a human rights-based approach, 
emphasizing the protection of human rights. In the climate domain, this means ensuring that AI-
driven resource allocation, emissions tracking, and sustainability assessments are equitably applied 
across regions and populations. 
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Effective regulation is needed to establish standards and guidelines that promote equitable access 
and use of AI technologies in climate action and address market concentration. The UN and EU 
have launched signiĔcant initiatives to regulate AI development, with growing attention to ensuring 
its responsible use in climate governance. Addressing these factors allows for progress towards a 
more equitable AI landscape where AI-driven climate action beneĔts all sectors and contributes to 
sustainable and inclusive development.

In addition, biases in AI-powered climate modelling, emissions tracking, and environmental 
monitoring can lead to skewed results, undermining the effectiveness of AI solutions. Incomplete or 
biased data can/will perpetuate existing inequalities and result in climate policies that do not address 
the needs of under-represented populations. For example, if AI-based deforestation monitoring is 
trained primarily on satellite imagery from temperate regions, it may fail to accurately detect land 
degradation in tropical forests, leaving critical ecosystems unprotected. Similarly, if AI-driven energy 
transition models prioritize developed nations’ infrastructure, they may overlook viable renewable 
energy solutions for LDCs and SIDS.

Governments and organizations need to implement stringent data protection laws, establish clear 
guidelines for data handling, and ensure that there are enforcement mechanisms in place to prevent 
bias in AI-driven climate assessments. Moreover, transparency in data collection processes and the 
involvement of local communities in AI-based environmental monitoring can help build trust and 
ensure that the data collected is representative and useful for climate action and available to beneĔt 
local communities.

Risks related to the deployment of AI systems encompass equity and inclusion issues related to 
environmental injustice and social inequality. These challenges stem from systemic discrimination 
and deep-rooted prejudices against speciĔc groups, communities, or regions. Misuse of AI systems 
can perpetuate and even exacerbate existing inequalities if they reinforce these entrenched biases. 
Previous AI models have demonstrated biased predictions when applied to racial minorities, leading 
to harmful and potentially serious consequences (Columbia University, 2024). Therefore, it is crucial 
to design and implement AI with a conscious effort to address and rectify these long-standing issues 
to ensure fair and equitable outcomes for all. As concluded by UNESCO (2020), “Algorithmic failures 
are ultimately human failures that reĕect the priorities, values, and limitations of those who hold 
the power to shape technology. We must work to redistribute power in the design, development, 
deployment, and governance of AI if we hope to realize the potential of this powerful advancement 
and address its perils.” Ensuring AI fairness in climate decision-making requires a conscious effort to 
address systemic biases and empower historically disadvantaged communities to participate in AI-
driven climate governance.

The broader issue of representation bias in AI extends beyond gender bias and is a signiĔcant concern, 
particularly in developing countries. This bias arises from the data scarcity and digital divide prevalent 
in these regions, which can lead to AI systems trained on existing datasets that fail to accurately 
represent local realities. The lack of comprehensive and diverse data results in AI models that may 
not be Ĕt for purpose, as they often lack the necessary contextual understanding to address speciĔc 
challenges faced by communities in developing countries. 

To overcome this limitation, it is essential that efforts to build AI solutions for these regions occur in 
tandem with targeted data collection initiatives. These initiatives should aim to equip AI tools with 
the appropriate context, ensuring that they can effectively solve local problems and contribute to 
meaningful development. AI systems can be better tailored to address the nuanced challenges 
these areas face by incorporating diverse, and disaggregated datasets that reĕect the unique socio-
economic, cultural, and environmental conditions of developing countries, ultimately leading to more 
equitable and impactful outcomes.
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Especially, gender bias in AI poses a signiĔcant challenge to its effective use for climate action in 
both developed and developing countries. Unless carefully designed and implemented, AI systems 
can perpetuate and even exacerbate existing gender inequalities, especially as economic systems 
often obscure the crucial contributions of women in ensuring food security, healthcare, and climate 
resilience, due to the informal nature of their work in these sectors. This bias can manifest in various 
ways, such as under-representation of women in data used for training AI models or gender-
insensitive design of AI applications. Addressing gender bias requires a conscious and deliberate 
effort and investments to include diverse contributions and perspectives in the development and 
deployment of AI technologies. Ensuring that AI solutions for climate action are gender-responsive 
can help promote more inclusive and equitable outcomes.

The UNFCCC report “Progress, Good Practices, and Lessons Learned in Prioritizing and Incorporating 
Gender-responsive Adaptation Action” (2023) offers an in-depth analysis of how gender-responsive 
strategies are being integrated into climate change adaptation efforts worldwide. It underscores the 
necessity of involving both women and men in the formulation and execution of these strategies to 
address gender-speciĔc climate impacts, i.e., the importance of equitable gender representation in 
decision-making processes, demonstrating effective practices and lessons from various countries. 
It identiĔes existing gaps and challenges, such as the need for more gender-disaggregated data 
and increased funding for gender-responsive projects and provides recommendations to enhance 
resilience and promote gender equality in adaptation initiatives.

As AI-driven climate solutions become more widespread, integrating gender considerations into AI-
based adaptation planning is critical to ensuring inclusive and effective climate action. AI models 
used for early warning systems, resource allocation, and climate-smart agriculture must account 
for gender-speciĔc vulnerabilities and contributions to avoid reinforcing existing inequalities. For 
example, AI-powered disaster response systems should ensure that data collection processes 
incorporate gender-disaggregated information to prioritize the needs of women, who are often 
disproportionately affected by climate-induced displacement and resource scarcity.

Table 9 summarizes the approaches and outcomes of gender-responsive climate adaptation 
strategies from several LDCs and SIDS from the UNFCCC report.
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Table 9: Gender-responsive climate adaptation strategies in LDCs and SIDS 

Country Gender-responsive 

Actions

Challenges Addressed Outcomes/BeneĔts

Burkina Faso Outlined women’s 
vulnerabilities, 
promoted precipitation 
harvesting techniques, 
and addressed water 
scarcity.

Women are more 
dependent on affected 
resources, less access to 
agricultural inputs and 
land, longer distances 
for water.

Enhanced resilience 
of women farmers, 
improved water 
management, and 
reduced vulnerability 
to extreme weather 
events.

Fiji Ensured women’s 
participation in decision-
making and access to 
economic resources 
and Ĕnancial services, 
recognized women’s 
social roles.

Limited recognition of 
women’s contributions 
in adaptation activities.

Increased women’s 
involvement in 
adaptation activities, 
empowered women 
through economic 
opportunities, and 
promoted sustainable 
resource use.

Saint Lucia Committed to gender 
equality, collected 
gender-disaggregated 
data, conducted gender 
assessments, and 
developed gender-
responsive strategies.

Lack of gender-
disaggregated data on 
adaptation needs.

Better understanding of 
gender-differentiated 
impacts, informed 
decision-making, and 
inclusive adaptation 
strategies.

Guatemala Developed a gender 
strategy for NDC, 
implemented 
ecosystem- and 
community-based 
adaptation actions with 
women’s participation.

Ensuring women’s 
participation and 
reducing vulnerabilities.

Empowered women 
through participation 
in restoration and 
conservation projects, 
enhanced resilience 
of ecosystems and 
communities.

Guinea-Bissau Developed gender 
action plans, used 
gender-sensitive 
budgeting, and trained 
women in food safety 
and entrepreneurship.

Allocating resources 
for gender equality 
and women’s 
empowerment.

Strengthened resilience 
of vulnerable coastal 
areas, improved climate 
information systems, 
and enhanced women’s 
economic opportunities 
and food safety 
knowledge.
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These case studies highlight how LDCs and SIDS are tackling the gender-speciĔc impacts of climate 
change to promote gender equality and women’s empowerment through tailored adaptation 
strategies. To maximize the effectiveness of these approaches, AI can play a role in improving 
gender-responsive adaptation strategies by ensuring that climate risk assessments, Ĕnancial 
assistance programmes, and resilience-building initiatives are informed by equitable and unbiased 
data. AI-driven climate models must be trained to recognize gender-speciĔc vulnerabilities to 
prevent reinforcing biases in climate planning and policy implementation.

The report calls for ongoing support to ensure that gender-responsive measures are integrated into 
national adaptation plans. The analysis of gender bias in the use of AI for climate action in developing 
countries relates to the thematic areas addressed in Section 4, as follows:

Early Warnings and Disaster Risk Reduction: AI can reinforce male-dominated perspectives, 
overlooking women’s speciĔc vulnerabilities in disaster response and risk reduction (Varona et al., 
2021). Social and economic inequalities, such as restricted mobility and limited access to information, 
further heighten these risks.

Resource Management: AI-driven systems for resources management in water, agriculture, 
Ĕsheries, and forests often neglect women’s critical roles, leading to inefĔcient and unjust resource 
allocation and conservation efforts. 

Energy Management: AI in energy systems can deepen gender inequalities by ignoring women’s 
reliance on traditional biomass, and their role in driving the energy transition in life-sustaining sectors 
(food transformation), while men have greater access to modern energy sources, equipment,  
and training.

Transport Management: AI-driven transport systems that prioritize efĔciency over safety may fail 
to consider women’s speciĔc schedules and security needs, limiting their safe mobility.

Education and Community Engagement: AI tools that disregard gender disparities in technology 
access can widen the digital divide, restricting opportunities for women.

Various international organizations have made recommendations for integrating gender perspectives 
into public policies and educational programmes to address gender biases in AI. Studies have begun 
to explore the intersection of AI and gender equality under the UN SDGs; research has identiĔed 
societal roots and technical factors contributing to gender bias in AI. 

The Paris Agreement acknowledges that when taking action to address climate change, Parties 
should respect, promote and consider gender equality and empowerment of women. Gender 
considerations are increasingly being prioritized in climate funds and funding mechanisms (Schalatek, 
2022). In addition to gaining access to climate Ĕnance and capacity-building, developing countries 
– primarily LDCs and SIDS – have advocated for enhanced technology transfer to aid their climate 
change adaptation efforts and ensure gender inclusivity. 
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6.5. The Role of AI in Accelerating Fossil Fuel Extraction 
and Exploitation, Spreading Climate Misinformation, and 
Promoting Consumerism

While AI holds signiĔcant promise for driving positive change, it also carries risks when applied in 
ways that conĕict with environmental sustainability objectives. For instance, AI has been widely 
deployed to enhance fossil fuel exploration and extraction, increasing efĔciency and proĔtability in 
an industry responsible for nearly 90% of global CO₂ emissions (IEA, 2023). This widespread use 
of AI in fossil fuel operations risks extending the economic viability of carbon-intensive industries, 
directly contradicting global efforts to transition to renewable energy. Moreover, AI-driven targeted 
advertising fosters consumerism and unsustainable behaviours, driving demand for products 
and services that contribute to environmental degradation. These AI-enabled systems inĕuence 
consumption patterns on a massive scale, shaping global markets and intensifying resource depletion. 

Additionally, AI systems are increasingly being exploited to generate and disseminate climate 
misinformation at unprecedented scales, undermining evidence-based policy discussions. For 
example, AI-powered disinformation campaigns have been found to manipulate public perception 
by downplaying climate risks, delaying regulatory action, and fostering distrust in climate science 
(Galaz et al., 2023a). The rapid evolution of AI-generated content, combined with opaque social 
media algorithms, creates a landscape where false climate narratives spread faster than fact-
based discourse.

Eremin and Selenginsky (2023) focused on the application of AI methods in oil and gas 
production, illustrating how AI technologies have become critical in optimizing processes from 
planning and complication prevention to drilling and production capacity enhancements. Their 
study emphasizes the use of AI models in predicting reservoir properties, such as permeability 
and porosity, using log and seismic data. These accurate predictions allow engineers to better 
manage hydrocarbon recovery. Additionally, AI systems, trained on extensive datasets from real 
experiments, simulations, and Ĕeld logs, can predict potential complications and emergencies. 
Overall, AI contributes to improving efĔciency and boosting hydrocarbon recovery in the oil 
and gas industry. In some cases, AI systems have increased production levels by up to 5%, with 
projections indicating that AI could generate up to $425 billion in value for the sector by 2025 
(ICLR, 2024).

Galaz et al. (2023) and Treen et al. (2020) describe the role of AI-driven misinformation in shaping 
public opinion, emphasizing the need for regulatory measures and interdisciplinary strategies 
to counteract its impact. Chu-Ke and Dong (2024) highlight the dangers of AI-generated 
disinformation, calling for strengthened ethical AI development, regulatory oversight, and public 
AI literacy initiatives.
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Treen et al. (2020) further demonstrate how AI-driven misinformation exacerbates scepticism 
and polarization, particularly on social media platforms, which amplify conĔrmation bias and echo 
chambers. All three studies stress the urgency of addressing misinformation through a multi-
pronged approach, integrating policy, education, and technology-based solutions. While the 
perspectives differ, they all stress that the evolution of AI and digital platforms poses signiĔcant 
challenges that must be addressed through collaboration, governance, and cross-disciplinary 
research. The integration of ethical AI practices, improved literacy, and interdisciplinary efforts will 
be crucial in mitigating the adverse impacts of misinformation and promoting more accurate and 
reliable climate communication.

However, AI can be also leveraged to address the growing threat of climate change misinformation 
on social media, which is outpacing the capacity of human fact-checkers. For example, Rojas et al. 
(2024) developed a two-step hierarchical machine learning model to detect and classify climate 
misinformation, improving the accuracy and efĔciency of content moderation. The study introduces 
the Augmented Computer Assisted Recognition of Denial and Scepticism (CARDS) model, speciĔcally 
designed to categorize climate-related claims on Twitter (ofĔcially known as X). By analysing Ĕve 
million climate-themed tweets over a six-month period in 2022, the study found that more than half 
of contrarian climate claims involved attacks on climate actors. These spikes in misinformation were 
driven by four main stimuli: political events, natural events, contrarian inĕuencers, and convinced 
inĕuencers. The Ĕndings emphasize the potential of automated tools to help detect and mitigate 
the spread of climate misinformation in real time, providing valuable insights for combating online 
disinformation. This model offers a new direction for leveraging ML to tackle climate change denial 
and scepticism, which has signiĔcant implications for both policy and public discourse.

Moreover, micro-targeting ML techniques can be leveraged for digital nudging in order to foster 
more sustainable habits and behavioural changes shift, (Bartmann, 2022) as presented in Section 4.8.
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7. Policy Options for the Use  
of AI as a Technological Tool  
for Advancing and Scaling Up 
Transformative Climate Solutions  
for Mitigation and Adaptation  
Action in Developing Countries

7.1. Deploy AI tools for Climate Change Mitigation and 
Adaptation Strategies

Policymakers could consider the promotion and use of AI tools and systems on proven cases of AI for 
climate action included in this paper such as on early warning systems for disaster risk reduction (UN 
Early Warnings for All Initiative), AI-driven crop monitoring to enhance food security (Early Warnings 
System for Crop Phenotyping and Food and Nutrition Security in Kenya), and AI-based environmental 
monitoring for ecosystem protection (AMAP Mangrove Mapping in the Solomon Islands).

7.2. Develop Inclusive and Sustainable ArtiĔcial  
Intelligence Policies

Energy efĔciency: Formulate policies that promote the development and deployment of energy-
efĔcient AI technologies. Encourage innovations in green computing to reduce the environmental 
footprint of AI systems. This includes incentivizing research into energy-saving algorithms and 
hardware, supporting the transition to renewable energy sources for data centres and communication 
networks, and setting standards for energy efĔciency in AI applications. Implement policies 
that require a life cycle assessment of AI systems to evaluate their environmental impact from 
development to deployment. Encourage the development of cooling technologies that minimize 
water usage.

Data security and Sovereignty: Implement robust data protection laws that ensure the security 
of data used in AI applications. Enhance cybersecurity measures to protect sensitive data and 
implement strict protocols for data access and management. This includes establishing guidelines 
for data collection, storage, and sharing, ensuring that data governance frameworks are in place to 
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address concerns about unauthorized access, data breaches, and misuse of information. Policies 
should also mandate regular security audits and compliance checks, promote the use of encryption 
technologies, and foster a culture of transparency and accountability in data handling practices. 
Moreover, enhancing public awareness about data security issues is key to building trust in AI systems. 
In addition, data governance frameworks should respect and uphold data sovereignty principles, 
particularly the rights of indigenous peoples and local communities to retain ownership, control, 
and access to the data that relates to them. This includes ensuring that data used in AI modelling is 
collected, processed, and shared in a legitimate way.

Digital divide: Invest in digital infrastructure to improve access to AI technologies in developing 
countries, with a focus on LDCs and SIDS. This includes expanding internet connectivity, enhancing 
computing capabilities, ensuring a reliable power supply, and making essential AI development 
resources available as digital public goods. Develop strategies to bridge the digital divide by 
ensuring equitable access to electricity, ICT infrastructure, datasets and models, and AI skills. This 
involves investing in AI research relevant to developing countries with a focus on LDCs and SIDS, 
public infrastructure for AI development, digital literacy programmes, particularly in remote and 
underserved areas, and providing training on AI technologies, and incorporate bias detection and 
mitigation techniques in AI model development. Policies should also focus on making AI tools and 
resources openly accessible and affordable to all communities, thereby fostering inclusive growth, 
innovation, and quality. Develop ethical frameworks that govern the use of AI, ensuring that AI 
applications are free from biases, thus promoting fairness and equity in AI deployment and enabling 
beneĔt-sharing with local communities.

7.3. Integrate Indigenous Knowledge, Gender-responsive 
Approaches, and Youth Stakeholder Innovation

Incorporate Indigenous Knowledge: Indigenous knowledge systems provide localized environmental 
insights that have been reĔned over centuries and can enhance the effectiveness of AI applications 
in speciĔc climate contexts. However, their integration should be targeted and relevant, ensuring 
that AI solutions respect, validate, and complement traditional knowledge rather than replace 
or misrepresent it. To ensure meaningful integration of indigenous knowledge in AI systems,  
policies should:

•	 Engage Indigenous Communities in AI Co-design – Ensure participatory approaches in 
AI model development where local knowledge is applicable, avoiding nominal inclusion.

•	 Develop Ethical Practices – Establish clear data-sharing agreements that respect indigenous 
values over environmental data and avoid misappropriation of traditional knowledge.

•	 Incorporate Cultural Context in AI-Driven Climate Communication – Ensure AI-powered 
climate advisory platforms use culturally appropriate language, narratives, and risk perception 
frameworks for effective decision-making in local communities. 

Gender-responsive AI policies: Ensure that AI policies and programmes are inclusive and address 
gender and demographic disparities. Invest in the generation of gender disaggregated data to 
document and recognize the crucial contributions of women in climate action, such as the care 
economy, climate resilient agriculture and food security, water management, and energy transition. 
Promote the active participation of women in AI-related Ĕelds through targeted education, training 
programmes, and career opportunities. 
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Include Youth in AI Policy Development and Climate Solution Innovation: Engage youth 
stakeholders to democratize the development and implementation of AI policies and programmes 
that are age-responsive and integrate the needs of children and youth. Promote stronger interlinks 
among youth leaders in digital technologies and the innovation ecosystem to support youth-led 
initiatives in AI policy and climate action. Such efforts should recognize and harness the unique 
experiences, perspectives, and skills of children and youth. 

7.4. Promote Socially Inclusive ArtiĔcial  
Intelligence Development

Inclusive AI development: Ensure that AI development and deployment processes and governance 
are inclusive, considering the needs and perspectives of marginalized communities, including 
women and indigenous groups, and low-income populations, as well as the youth. Develop policies 
that promote equitable access to AI technologies and their governance, focusing on affordability, 
infrastructure development in underserved areas, and the reduction of digital illiteracy barriers. 
This includes fostering capacity-building initiatives to enable meaningful participation in AI-driven 
climate solutions. 

Community Engagement in AI-Driven Climate Solutions: Community engagement is most 
relevant in AI applications where local knowledge, risk perception, and contextual adaptation are 
critical to implementation. This includes: 

•	 Early Warning and Disaster Preparedness – AI-based early warning systems for ĕoods, 
cyclones, and droughts must incorporate community-level participation to ensure that alerts 
reach vulnerable populations through accessible communication channels, such as radio, mobile 
alerts in local languages, or community leaders as trusted messengers.

•	 Climate-resilient Agriculture – AI applications that provide precision agriculture 
recommendations should integrate local farming knowledge to ensure AI-driven advisories align 
with traditional farming techniques rather than imposing one-size-Ĕts-all solutions. Engaging 
smallholder farmers in training and feedback loops ensures the usability of AI tools. 

•	 Sustainable Land and Resource Management – AI applications in deforestation monitoring and 
biodiversity conservation should involve local stakeholders in validating AI-generated insights 
and ensuring that AI-driven policy decisions do not conĕict with customary land rights or 
sustainable resource use practices. 

•	 Energy Access and ElectriĔcation – When AI models are used to optimize renewable energy 
distribution in remote or off-grid areas, engagement with local communities ensures that 
deployment strategies prioritize energy needs and do not exacerbate existing inequalities in 
energy access. 

•	 Recognizing Care Work in Climate Resilience – AI applications should be designed to recognize 
and integrate the vital role of unpaid care work – predominantly carried out by women in all their 
diversity – in sustaining the climate resilience of local communities. 
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7.5. Foster International Cooperation, Capacity-building, and 
Knowledge Sharing

Establish collaborative frameworks: Strengthen international partnerships and cooperative 
frameworks to facilitate knowledge exchange, technology transfer, and capacity-building, in line with 
the provisions of the UNFCCC and the Paris Agreement. Partnerships should involve international 
organizations, multilateral climate Ĕnance mechanisms, and private sector stakeholders, fostering a 
global, inclusive effort to tackle climate change.

Capacity-building programmes: Implement training programmes and workshops to build local 
expertise in AI and climate science. This can be achieved through partnerships with educational 
institutions, international organizations, and the private sector to provide training and education. 
Targeting government ofĔcials, technical experts, and community leaders will enhance their 
understanding and application of AI in climate action, empowering local communities to leverage AI 
technologies effectively.

Open data platforms and digital public goods: Promote the use of open data platforms and 
registering datasets and models to enable countries to share climate-related data and models. This 
facilitates collective learning and innovation, allowing for transparent exchange and access to valuable 
climate information, which can enhance the accuracy and applicability of climate predictions. Open 
data platforms standardize data collection methods, ensure consistency, and foster regional and 
global cooperation, ultimately accelerating the development and deployment of effective climate 
action strategies tailored to speciĔc needs. The Digital Public Goods (DPG) registry provides open-
source software, open data, open AI models, open standards, and content that adhere to privacy 
and other applicable laws and best practices, do no harm, and help attain SDGs. A DPG registry 
would typically catalogue such resources to promote access, facilitate sharing, and encourage the 
development and use of these tools in various sectors, including education and climate action. This 
kind of registry aims to support global development by making high-quality digital solutions widely 
accessible and promoting international cooperation in the digital space, particularly in supporting 
under-resourced areas or communities. By leveraging DPG in the form of open data and open-
source AI models, countries can improve the accuracy and applicability of climate predictions and 
enhance their overall resilience to climate impacts.

7.6. Establish Robust Monitoring and Evaluation Frameworks

Impact assessment: Develop monitoring and evaluation frameworks to assess the impact and 
effectiveness of AI applications in climate action. This includes setting performance metrics and 
regularly reviewing progress to ensure AI solutions are effective and aligned with climate goals. Use 
these assessments to reĔne policies and strategies continuously.

Transparency and accountability: Ensure transparency in AI initiatives by making data, 
methodologies, and Ĕndings publicly accessible to stakeholders. This openness fosters trust and 
enables independent veriĔcation of results, ensuring that AI applications in climate action are 
transparent and reliable. Establish mechanisms to track the progress of AI projects, identify areas 
for improvement, and address any issues that arise. Regular reporting and feedback loops are 
important to maintain accountability and ensure that AI-driven climate solutions meet their intended  
goals effectively.
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7.7. Invest in and Foster ArtiĔcial Intelligence Research, 
Development, and Innovation 

Localized AI solutions: Prioritize funding for AI research and development projects that are tailored 
to local contexts and address speciĔc climate challenges faced by developing countries, with a focus 
on LDCs and SIDS. Encourage innovation in AI research and applications that can directly beneĔt 
these regions.

Interdisciplinary and applied research: Promote interdisciplinary and applied research at the 
convergence of computer science and climate science. Establish pathways for enhancing the 
technical maturity of AI applications in climate change mitigation and adaptation through targeted 
research, development, and demonstration initiatives.

Support for start-ups and innovation hubs: Create supportive environments for start-ups and 
innovation hubs focusing on AI for climate action. Provide grants, tax incentives, and incubation 
support to foster innovation in the private sector.
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8. Conclusions and  
Recommendations

8.1. Conclusions 

The use of AI to combat climate change presents opportunities, challenges, and risks for developing 
countries. Based on the Ĕndings in the preceding chapters, this paper draws conclusions and offers 
recommendations. It recognizes that the presented Ĕndings are likely to change in the near future 
due to the rapid evolution of AI usage.

The Role of AI in Advancing Climate Solutions: AI and ML can support efforts to adapt to and 
mitigate the effects of climate change, including by improving disaster risk preparedness, energy 
efĔciency, sustainable mobility, resource management and industrial transformation. Unlike 
traditional modelling techniques, AI systems can rapidly analyse vast, multi-source datasets 
in real time, enhancing forecasting accuracy and enabling more adaptive decision-making in  
uncertain situations. 

For example, applying AI to agriculture and Ĕsheries can optimize crop yields, manage Ĕsh stocks, 
combat illegal Ĕshing, and safeguard marine ecosystems through predictive analytics, image 
recognition, and automated monitoring tools. Similarly, integrating AI into transport networks, and 
industrial operations can accelerate the transition to low-carbon economies by optimizing logistics, 
reducing emissions through smart control systems, and enabling predictive maintenance. 

Predictive and Adaptive Capabilities for Climate Resilience: AI-powered forecasting, integrated 
with real-time data from Internet of Things (IoT) sensors, can be leveraged to enhance early warning 
systems and strengthen resource management. These predictive capabilities are particularly 
relevant in regions that are vulnerable to climate change, such as SIDS and LDCs, where extreme 
weather events pose signiĔcant risks. Leveraging AI-driven models enables governments and local 
communities to enhance their capacity to adapt to disasters and safeguard infrastructure, livelihoods, 
and ecosystems.

Optimizing Resource Use Through AI: AI-driven solutions in agriculture, Ĕsheries, energy grids, 
transportation, and industrial processes can reduce emissions and bolster sustainability. However, 
maintaining and scaling AI-driven systems in developing contexts requires enhanced capacity-
building efforts and investment in digital infrastructure to ensure long-term effectiveness.
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Embedding Cultural and Local Context in AI Solutions: Incorporating local contexts into AI 
solutions is essential for addressing the unique challenges and opportunities present in different 
regions. Socio-economic factors, such as local languages, traditions, access to resources, inĕuence 
how communities interact with technology and the effectiveness of different solutions. Geographic 
factors, such as climate, infrastructure, and natural resources, also shape the speciĔc needs and 
priorities of local populations.

Understanding and integrating these local contexts enables the development of AI systems 
that better serve the diverse needs of communities, ensuring that technological advancements 
contribute to inclusive low-emission and climate-resilient development. 

Enabling AI Deployment: The successful deployment of AI for climate action in developing 
countries, in particular SIDS and LDCs, requires an enabling environment that includes:

•	 Infrastructure Development: Reliable electricity, broadband connectivity, and access to cloud 
computing to support AI deployment.

•	 Skill Development: Strengthening technical expertise through capacity-building programmes 
to ensure the effective customization and maintenance of AI systems.

•	 Financial Support: Securing investments from bilateral and multilateral sources, including from 
the Green Climate Fund (GCF), the Adaptation Fund, the Global Environment Facility (GEF), 
the Least Developed Countries Fund (LDCF) and the Special Climate Change Fund (SCCF) to 
scale up AI-driven climate technologies.

•	 Governance and Policy Frameworks: Establishing legal mechanisms that promote the 
responsible use of AI, protect data privacy, and encourage open-source AI solutions.

Challenges and Risks in AI-driven Climate Action: Despite its potential, the adoption of AI for 
climate action faces signiĔcant barriers, including:

•	 High Costs and Limited Resources: Many developing countries, particularly SIDS and LDCs, 
lack the capital to invest in AI infrastructure and maintain advanced digital technologies.

•	 Data Scarcity and Quality Issues: AI models require large, high-quality, gender disaggregated 
datasets to function effectively, yet many regions lack sufĔcient localized data.

•	 Digital Divide and Exclusion Risks: Connectivity gaps and low digital literacy levels may 
marginalize vulnerable populations, limiting equitable access to AI solutions.

•	 Security and Privacy Concerns: Inadequate data protection frameworks could lead to data 
misuse, unauthorized access, or cyber vulnerabilities.

•	 Bias and Equity Challenges: AI models trained on data from high-income countries, and male-
dominated economic sectors may overlook local contexts and existing inequalities, potentially 
reinforcing inequalities in climate response strategies.

•	 Disinformation and Manipulation Risks: The use of AI, particularly generative models and 
algorithmic targeting, can amplify climate-related disinformation, mislead public opinion, and 
undermine trust in climate science, particularly within information ecosystems that are either 
poorly regulated or highly vulnerable. 
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Opportunities for Inclusive and Equitable AI Adoption

•	 Open-source and Shared Platforms: Encouraging global collaboration while respecting local 
data sovereignty to ensure AI applications are accessible and tailored to regional needs.

•	 Hybrid Approaches: Combining rule-based systems with machine learning techniques to 
enable effective AI deployment in environments with limited data.

•	 Targeted Funding and Partnerships: Leveraging climate Ĕnance instruments and forging 
partnerships with universities, NGOs, and technology Ĕrms to develop AI solutions adapted to 
speciĔc regional challenges.

•	 Inclusive AI Design: Engaging under-represented groups, including women, youth, and 
indigenous communities in AI development to ensure that diverse, local perspectives shape 
context-speciĔc climate solutions.

8.2. Recommendations

•	 Promote the use of open-source AI applications in climate change mitigation and adaptation 
strategies in developing countries, ensuring they are deployed and are the most suitable tool 
for the task.

•	 Encourage the use of AI for climate action by promoting supportive policies, local training,  
and resources to empower stakeholders to use AI to reduce GHG emissions and build  
climate-resilience. 

•	 Integrate AI technologies into national and regional climate strategies where they can enhance 
areas such as early warning systems, optimization of resource allocation, and data-driven 
decision-making in climate adaptation and mitigation efforts.

•	 Strengthen global partnerships and knowledge sharing by fostering international cooperation 
and developing capacity-building programmes to enhance the skills and capabilities of local 
stakeholders, promoting knowledge-sharing and collaboration to maximize AI’s potential in 
climate strategies.

•	 Develop inclusive and sustainable policies and establish governance approaches, enabling  
data-driven decision-making and access to climate regulatory frameworks and state-of- 
the-art research.

•	 Reduce the energy consumption and carbon footprint of AI by implementing energy-efĔcient 
algorithms, promoting the use of Small Language Models (SLMs), and adopting renewable 
energy sources for AI infrastructure.

•	 Strengthen data security and ethical governance by developing robust data governance 
frameworks to ensure privacy, security, and ethical use of data, protecting against unauthorized 
access and breaches.

•	 Address gender bias by applying inclusive design practices, generating and using diverse 
datasets, and establishing gender-responsive policies, particularly in climate-related 
applications.
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•	 Bridge the digital divide through equitable access by investing in infrastructure development 
and capacity-building initiatives in developing countries to promote equitable access to AI 
technology and resources.

•	 Invest in AI research, development, and innovation tailored to local contexts and priorities by:

	– Collaborating with local communities, governments, and organizations to identify speciĔc 
climate challenges and priorities;

	– Supporting research initiatives that create AI solutions aligned with the unique 
environmental, social, and economic conditions of different regions;

	– Allocating funding for local AI innovation hubs to foster relevant and sustainable home-
grown solutions;

	– Expanding access to AI resources for climate solutions by facilitating the availability of AI 
tools, data, and technical expertise to support effective, locally relevant AI-driven climate 
responses at local and national levels in regions facing signiĔcant climate challenges.

•	 Enable AI deployment for climate action in developing countries with a focus on SIDS and 
LDCs by facilitating relevant infrastructure and skills development, Ĕnancial support and the 
establishment of governance and policy frameworks.

•	 Integrate local knowledge into AI-powered solutions:

	– Engaging local and indigenous communities to incorporate traditional knowledge into 
datasets and the development of AI models for local context-speciĔc climate action. This 
is particularly relevant in sectors such as land management, disaster preparedness, and 
biodiversity conservation, where local insights complement AI-generated predictions.

•	 Ensure gender-responsive approaches in AI development by: 

	– Investing in gender disaggregated data generation, collection and use to feed AI-powered 
climate solutions; 

	– 	Involving women and gender experts throughout all phases of the design, development, 
and implementation of such solutions;

	– 	Promoting inclusivity by addressing the speciĔc needs, contributions, and lived experiences 
of women and girls, particularly in contexts where socio-economic disparities limit access to 
climate technologies; 

	– 	This is especially pertinent in climate adaptation policies, disaster resilience planning, and 
AI applications in sectors such as sustainable agriculture and water resource management, 
where gender-differentiated vulnerabilities and contributions must be considered.
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•	 	Establish robust monitoring and evaluation frameworks to assess the impact, effectiveness, and 
ethical implications of AI applications in achieving climate goals by:

	– 	Developing clear metrics and indicators to evaluate the impact of AI on environmental, 
social, and economic outcomes relating to climate goals;

	– Implementing regular monitoring processes to adjust AI interventions based on  
their effectiveness;

	– Establishing ethical review boards to oversee AI projects, ensuring adherence to ethical 
guidelines and preventing the exacerbation of inequalities or environmental challenges.
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