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Executive Summary

Climate change is one of the most pressing challenges of the 21st century, requiring rapid and
coordinated action across communities, sectors, approaches, and technologies to mitigate
greenhouse gas (GHG) emissions and enhance adaptation to climate impacts. It disproportionately
affects developing countries, including Least Developed Countries (LDCs) and Small Island
Developing States (SIDS), which are highly vulnerable to significant consequences of climate
change, including rising sea levels, extreme weather events, and shifting agricultural conditions.
These threats jeopardize socio-economic stability and environmental sustainability in these regions,
making climate adaptation and mitigation strategies essential.

This technical paper, prepared by the Technology Executive Committee (TEC) under the Technology
Mechanism Initiative on Al for Climate Action (#Al4ClimateAction Initiative), offers a comprehensive
overview for policymakers, practitioners, and researchers navigating opportunities, challenges, and
risks of the use of Al for climate action in developing countries, with a focus on LDCs and SIDS
as these countries face unique vulnerabilities to climate change. Al-driven solutions can become
potential enablers for adapting to climate impacts and reducing GHG emissions. However, risks
and challenges also exist, which need to be addressed for the effective and sustainable use of Al in
climate action.

In mitigation Al can enable the reduction of energy waste and the optimization of energy
consumption and distribution; scale the identification of emission hotspots and optimize industrial
processes while tracking their carbon footprint. Al-driven renewable energy management systems
can enhance energy grid efficiency, forecast power demand, and optimize solar and wind energy
deployment. Al tools can be also used to analyse data from transportation systems to reduce fuel
consumption through traffic optimization and route planning. The integration of Al into emission
reduction strategies can accelerate progress towards decarbonization and help nations meet their
climate commitments.

In the context of adaptation, Al can enhance early warning systems by predicting extreme weather
events such as hurricanes, floods, and droughts, enabling proactive disaster risk management. Al-
drivenurbanresilience toolscanbe used tosupportinfrastructure planningbyidentifying vulnerabilities
and optimizing land use. Additionally, Al-assisted resource and ecosystem management solutions
can help improve biodiversity conservation, sustainable water use, and land restoration efforts when
coupled with satellite imagery.
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Despite its potential, Al adoption in developing countries presents numerous challenges. Many
developing countries, and in particular LDCs and SIDS, face digital infrastructure limitations, including
unreliable internet connectivity, inadequate computing power, and a lack of skilled professionals to
develop and deploy Al systems. The digital divide hinders their ability to adopt Al-driven climate
solutions and addressing this divide requires significant investment in digital transformation and
capacity-building programmes. Furthermore, the availability and accessibility of high-quality climate
data remain significant barriers as many developing countries lack comprehensive and reliable
datasets for Al-driven decision-making. Without robust data-sharing frameworks and cybersecurity
measures, Al applications outputs may be unreliable or prone to exploitation. Moreover, bias and
inequity in Al systems can perpetuate social disparities if algorithms are not designed with inclusivity
in mind. Therefore, a proper governance framework is needed to mitigate these potential risks and
digital divide. Also, increased energy and water consumption and carbon footprints can have negative
consequences and pose threats to global climate goals. The resource intensity of Al, including its
energy and water consumption, raises concerns about sustainability, particularly in regions with
limited natural resources, and these have to be taken into account when considering Al as an enabler
for climate action.

To ensure Al serves as an enabler of climate resilience in developing countries, in particular LDCs and
SIDS, policymakers and stakeholders must prioritize capacity-building initiatives, strengthen digital
infrastructure, and establish inclusive governance frameworks. By fostering collaborations, including
between governments, academia, and the private sector, developing countries can build Al expertise
and ensure responsible Al deployment. Creating regional Al research centres and knowledge-sharing
platforms can further enhance local capacity and facilitate Al adoption tailored to the specific needs
of each country.

This technical paper concludes with a set of recommended priority actions, to be used to realize the
potential of Al in climate action: (a) addressing the digital divide should focus on expanding digital
infrastructure and investing in Al capacity-building programmes to empower developing countries
to leverage Al effectively for climate action; (b) enhancing data availability and access requires
stronger climate data collection efforts and the promotion of open-data initiatives to support Al
model development and deployment; (c) strengthening Al governance under the UNFCCC involves
creating regulatory frameworks to ensure Al transparency, fairness, and accountability, preventing
bias and misuse while fostering ethical Al adoption; (d) addressing gender bias and social inequalities
by designing Al models with inclusive approaches to prevent discrimination and ensure equitable
climate benefits is important; (e) managing the energy and water consumption of Al, among others,
should be taken into account, encouraging the development of energy-efficient Al systems and
promoting sustainability in Al operations; (f) enhancing global collaboration for Al in climate action
is necessary, strengthening cooperation between governments, UN agencies, private-sector actors
and other stakeholders to facilitate responsible Al adoption and address existing regulatory gaps.

Implementing these recommendations will allow developing countries, especially LDCs and SIDS, to
harness Al as a strategic tool to implement climate action at scale. Addressing lack of infrastructure,
sustainability concerns, data, and governance gaps, will not only strengthen local capacities but also
create opportunities for innovation and collaboration, ensuring these countries actively participate
in global climate efforts while addressing their unique climate challenges.
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1. Introduction

Countries are increasingly recognizing the potential of Al as an enabler to aid climate action and
as a tool to achieve their climate change targets. An analysis of the 169 Nationally Determined
Contributions (NDCs) showed that by February 2024, 57 developing countries mentioned applying
digital technologies to support their NDCs, including five of them that directly referred to Al. Al-
enabled systems show the potential to support both climate change mitigation and adaptation,
ranging from forecasting natural disasters to optimizing food production to enhancing energy
system efficiency (UNFCCC, 2024c).

This technical paper positions itself as a document to provide comprehensive information on Al for
climate action, by exploring its opportunities, challenges, and risks with a particular focus on the
vulnerability of LDCs and SIDS. An extensive literature review and collection of case studies have
been used to provide holistic and balanced information on this issue.

1.1. Aim and Objectives of the Technical Paper

The accurate prediction and monitoring of sea level rise are important for the protection of coastal
areas and the planning of risk mitigation strategies. Various Al-based methods have been developed
to address this complex issue, significantly enhancing the accuracy and efficiency of sea level
predictions. Techniques like hybridization, ensemble modeling, data decomposition, and algorithm
optimization are identified as key strategies for enhancing sea level predictions. DL, in particular, has
shown superior performance due to its ability to automatically extract features and store memory,
making it more effective than traditional ML models. This technical paper aims to outline the major
roles, opportunities, and challenges of Al in climate action. The following objectives serve as a guide
to addressing the complex interplay between Al technologies and climate change mitigation and
adaptation, particularly in the context of developing countries, LDCs, and SIDS:

+  Explore Al's role as a technological tool to advance and scale up transformative climate
solutions for mitigation and adaptation in developing countries, with a focus on LDCs and SIDS.

+ Address the challenges and risks posed by Al, particularly those relevant to climate action,
including concerns about energy consumption and its environmental impact, data security,
gender bias, the digital divide, and harmful practices.



+ Showcase the opportunities and challenges associated with existing Al applications in
developing countries, particularly LDCs and SIDS, in addressing climate change and improving
environmental outcomes.

+ Provide recommendations to policymakers on leveraging Al as a technological tool to advance
and scale up transformative climate solutions while overcoming identified risks and challenges.

1.2. Defining Artificial Intelligence

Artificial Intelligence is the discipline focused on the research and development of mechanisms
and applications of Al systems. Al systems are engineered systems that generate outputs such as
content, forecasts, recommendations, or decisions for a given set of human-defined objectives
(ISO/IEC 22989:2022(E)) by leveraging sophisticated algorithms, computational resources, and
reliable and comprehensive datasets. The escalating availability of data, coupled with advancements
in computational power, machine learning algorithms, and cloud computing, are some of the key
drivers behind the renewed interest in Al over recent years. In order to work efficiently and in real
time, Al applications rely on an optimal internet connection, without which data transmission would
be impaired.

The Al stack can be described with a five-layer structure:

+Hardware: The complete CPU/GPU design and production chain, from raw materials and rare
earth elements to advanced microelectronics manufacturing.

+ Cloud Infrastructure: Data centres providing computing power, data storage, and platforms,
encompassing energy supply, cooling, security, and redundancy.

+ Internet Infrastructures: Physical networks (cables, towers, servers, exchange points) and
end-user devices enabling internet connectivity and data transfer.

+  Software & Libraries: Al frameworks and development tools.

- Applications and Services: Al-based solutions in areas such as computer vision, language
processing, robotics, finance, agriculture, manufacturing, energy, media, healthcare,
transportation, and education.

Machine Learning (ML) is the process of optimizing model parameters through computational
techniques, such that the model’s behaviour reflects the data or experience. ML algorithms can be
appliedinvarious use cases and domains thanks to their capacity for pattern recognition. However,
effective application depends on the size, quality, and representativeness of the available data, as
well as the appropriateness of the ML algorithm selected for the problem, which often requires
testing multiple models to achieve the best predictions. A training-validation split is typically
used when the dataset is sufficiently large and robust. In this approach, the training set helps the
algorithm learn patterns from features and labels, whereas the test or validation set measures
accuracy and generalization. After testing, model parameters are adjusted to address errors and
enhance performance.



1.3. The Specificity of Least Developed Countries and Small
Island Developing States in the Climate Change Context

While climate change poses challenges globally, its impacts are disproportionately severe for Least
Developed Countries (LDCs) and Small Island Developing States (SIDS). SIDS and LDCs, due to their
high exposure and fragility, are among the most vulnerable to climate change and the least emitting.
Notably, SIDS and LDCs contribute minimally to, or bear almost no responsibility for, climate change,
yet their specific geographical and socio-economic conditions make them exceptionally susceptible
to its adverse effects (Mohan, 2023). Although the Paris Agreement endorses that developed
countries should lead in providing assistance and establishing a framework for finance, substantial
funding is still necessary for SIDS and LDCs to meet their climate objectives (Mohan, 2023).

LDCs and SIDS face heightened vulnerability to the adverse effects of climate change due to
their limited capacity or resources to implement adaptive and mitigation measures. They are
particularly exposed to climate risks such as rising sea levels, increased frequency and intensity
of extreme weather events, and changing precipitation patterns, as well as shifts in agricultural
conditions. These shifts, driven by changing temperatures, rainfall, and growing seasons, threaten
food security and necessitate agricultural adaptation strategies like crop diversification and efficient
water management. Moreover, these countries face significant challenges in reducing emissions or
transitioning to low-carbon economies due to a reliance on inexpensive fossil fuels, limited renewable
energy infrastructure, and the degradation of critical blue carbon ecosystems, such as mangroves
and seagrasses, which play a key role in carbon sequestration. Addressing these challenges requires
adaptation and mitigation strategies tailored to their unique contexts and needs (Havukainen et al.,
2022; Filho, W. L. et al., 2020; Leal Filho et al., 2021; Tokunaga et al., 2021).

1.4. Artificial Intelligence as a Driver of Adaptation and
Mitigation in Vulnerable Regions

In SIDS and LDCs, Al-driven technologies are being leveraged to improve early warning systems for
natural disasters (Albahri et al., 2024; Kuglitsch et al., 2022a), providing more timely and accurate
alerts to vulnerable populations. Beyond disaster preparedness, Al tools are being leveraged in LDCs
to optimize agricultural practices, enabling regions to better adapt to shifting climate conditions by
improving crop resilience and water resource management (Chen et al., 2023; Jain et al., 2023; Leal
Filho et al., 2022) and strengthen climate communication channels in coastal regions facing extreme
weather events (Chakravarty, 2023a). Furthermore, there are several examples of Al systems
used to assist in the reduction of GHG emissions, advancing renewable energies, and improving
environmental modelling and climate predictions (Bibri, 2024; Kaack et al., 2022; Sandalow et al.,
2023; Zhao et al., 2024).



1.5. Risks and Challenges of Al in Climate Action

Integrating Al into climate action is challenging both in developed and developing countries.
Concerns span its potential environmental, ethical, and societal impacts, including its high energy
and water consumption (Brevini 2020; IEA, 20243; Ligozat et al., 2021; Luccioni, 2023; Raman et
al., 2024; Yokoyama et al., 2023), data quality, security and privacy risks (Ansari et al., 2022; Habbal
et al., 2024; Jada and Mayayise, 2024; Paracha et al., 2024; Wazid et al., 2022), biases, including
gender bias (Lima et al., 2023; Nadeem et al., 2020, 2022; Paton-Romero et al., 2022), spread of
misinformation (Galaz et al., 2023b; Chu-Ke and Dong, 2024; Rojas et al., 2024; Treen et al., 2020),
and the digital divide (Bentley et al., 2024; Celik, 2023; Lutz, 2019;). While Al systems have significant
potential to address climate challenges, these risks highlight the need for careful governance, ethical
frameworks, and sustainable practices to ensure that the benefits of Al are fully realized without
exacerbating existing inequalities or causing unintended harm.

Environmental costs are growing as Al models — especially Deep Learning (DL) and Generative Al
(GenAl) - are highly resource- and energy-intensive, requiring substantial computational power and
large-scale data processing. This energy consumption must be carefully evaluated since it can offset
the potential climate benefits these technologies offer if not effectively managed (Dolby, 2023;
Kumar and Davenport, 2023; Saenko, 2023).

Security concerns are also a challenge in deploying Al, especially in critical areas like climate action
and environmental monitoring. Being software, each Al system is vulnerable to cyber attacks, data
breaches, and malicious manipulation of algorithms, which can compromise data integrity and
decision-making (Ansari et al., 2022; Wazid et al., 2022). The integration of Al and ML introduces
new security vulnerabilities, necessitating robust security measures and protocols to safeguard
data integrity and privacy, including encryption, regular audits, and the use of secure infrastructure
(Goldblum et al., 2022; Paracha et al., 2024; Rosenberg et al., 2021), ensuring Al applications remain
trustworthy and effective in their intended use.

Without adequate data, the potential for ML applications remains constrained, particularly in
addressing climate change. Data scarcity, especially in developing countries, reflects a broader issue
of unequal access to key resources like Al, a challenge inadequately explored in current literature
(Walsh et al., 2020). For instance, essential digital data — such as localized climate projections and
weather forecasts, which are critical for optimizing farming practices — remains sparse in many regions
(Balogun etal., 2020). Tackling data availability and access is essential for successfully implementing
Al and ML-driven solutions to mitigate climate impacts.

Al can exacerbate inequalities without careful design, mainly through biases in algorithm
development, data collection, and geographic coverage (McGovern et al., 2022a). Gender and
demographic biases, inadequate infrastructure, and limited digital literacy hinder Al adoption
in LDCs and SIDS (Ozor et al., 2023; UNFCCC, 2023) and may result in false assumptions and
inequitable climate responses if unaddressed. Bridging these gaps requires investment in
capacity-building, improved data collection, and infrastructure. Because ML models rely heavily
onlarge, reliable datasets - often sparse in developing countries — combining rule-based, physics-
informed, and domain-informed ML approaches can alleviate data constraints. Additionally,
misinformation about climate change can spread faster than fact-checkers can respond (Rojas et
al., 2024), undermining trust in policies and delaying action. These disparities and risks need to be
addressed for equitable Al-driven climate solutions.



1.6. Artificial Intelligence and International Climate
Frameworks and Resolutions

Al is increasingly being recognized in global climate governance as a tool to enhance climate action,
improve decision-making, and strengthen transparency and accountability. While Al is not explicitly
mentioned in the Paris Agreement or the 2030 Agenda for Sustainable Development, its applications
directly support the achievement of climate and sustainability goals, including through Nationally
Determined Contributions (NDCs), climate finance mechanisms, and capacity-building initiatives.

In March 2024, the United Nations General Assembly (UNGA) adopted a landmark resolution on
Al, emphasizing the need for safe, secure, and trustworthy Al systems (United Nations, 2024a).
Backed by over 120 Member States, the resolution underscores Al's potential to accelerate
progress on the Sustainable Development Goals (SDGs) while ensuring human rights protections
across the Al life cycle. It also calls for global cooperation to bridge the digital divide, enhance
digital literacy, and support equitable access to Al technologies, particularly in developing
countries. This resolution establishes a foundational international framework for integrating Al
into climate action, particularly by reinforcing ethical and responsible Al deployment for climate
monitoring, adaptation, and mitigation.

Beyond this resolution, global efforts are underway to regulate and standardize Al applications,
ensuring they align with climate objectives. Discussions on Al governance and sustainability are
emerging within international climate institutions. These focus on Al’s role in monitoring emissions,
optimizing renewable energy systems, supporting early warning systems, and improving carbon
market integrity.

In November 2023 at COP28, Parties noted the Technology Mechanism Initiative on Al for Climate
Action and requested the Technology Executive Committee (TEC) and the Climate Technology
Centre and Network (CTCN) to implement the initiative and enhance awareness of Al and its
potential role and impact.

Altogether, these initiatives signal a growing international consensus on the need for Al to
complement efforts in addressing climate goals.

1.7. Structure of the Technical Paper

This paper is structured as follows: Section 2 introduces and describes the key concepts underlying
Al and its applications in climate action. Section 3 outlines the methodology employed in this
paper. Section 4 delves into Al for climate action in developing countries, presenting case studies
and best practices, and providing detailed insights into their impacts and the lessons learned,
which can benefit other developing countries. Section 5 explores the role of Al in implementing
the Technology Mechanism Joint Work Programme and TNA outcomes. Section 6 discusses the
risks and challenges associated with Al deployment for climate action in developing countries.
Section 7 presents policy options for leveraging Al as a tool for advancing and scaling transformative
climate solutions in developing countries while addressing the identified challenges and promoting
sustainable development. Section 8 provides conclusions and recommendations, summarizing
the key findings of the paper and offering actionable steps for policymakers, as well as researchers
and practitioners. Section 9 is a call to action for these stakeholders to collaborate and harness Al
technologies in driving climate action and sustainable development.



2. Conceptual Definitions and
Discussions: Artificial Intelligence
for Climate Action

This section provides an overview of Al, its subsets, models, methods, paradigms, and applications
in the context of climate actions. Understanding these Al concepts is crucial for designing
informed policy frameworks and governance mechanisms for responsible and effective Al-driven
climate action.

Al is the discipline focused on the research and development of mechanisms and applications
of Al systems. Al systems are engineered systems that generate outputs such as content,
forecasts, recommendations, or decisions for a given set of human-defined objectives (ISO/IEC
22989:2022(E)). Al systems can be used for different purposes and be engineered in a way that
makes them capable of updating the parameters in the model from the new data they are exposed
to over successive updates or iterations (Sharifani and Amini, 2023; Shinde and Shah, 2018; Verma
etal., 2024).

ML models can be effectively utilized across various paradigms, including supervised learning,
unsupervised learning (including GenAl) and reinforcement learning (Donti and Kolter, 2021; Naeem
etal.,, 2023). In supervised learning, models are trained on labelled data, making them ideal for tasks
such as classification and regression, where specific outcomes are known in advance. Unsupervised
learning, on the other hand, does not rely on labelled data and is used to identify patterns and
structures within datasets, such as clustering or anomaly detection. Reinforcement learning involves
training models through trial and error, where an agent learns to make decisions by receiving
feedback from the environment, making it particularly useful for applications requiring sequential
decision-making, such as robotics or game-playing. Each of these paradigms provides unique
capabilities and approaches to solving complex problems, enabling the development of versatile
and powerful ML applications. Here, it suffices to point out that supervised learning is particularly
effective for climate-impact forecasting, whereas unsupervised methods excel in identifying novel
climate patterns, and reinforcement learning optimizes resource allocation and decision-making
under climate uncertainty.

Deep Learning (DL) is a subset of Machine Learning (ML) that utilizes Artificial Neural Networks
(ANNSs). While inspired by simplified models of biological neurons, ANNs function in a fundamentally
different way to the human brain, as they lack the dynamic adaptability, biochemical signalling, and
complex interconnectivity of biological neural systems. They are formed by nodes, arranged in



units, in turns distributed in a series of layers. The number of units for each layer depends on the
complexity of the task the ANNs have been conceived to solve and may vary from a few dozen
to millions. The learning process of an Artificial Neural Network involves updating the connection
strength (weight) of a node. By using the error between the predicted value and the correct value,
the weightin the network is adjusted so that the error is minimized and an output closer to the target
is obtained (Su-Hyun et al., 2018). These layers are particularly effective in recognizing patterns for
handling various tasks including predictive modelling and adaptive control. For this reason, they offer
promising applications in climate research such as analysing satellite imagery to detect deforestation
patterns and track ice sheet melting, enhancing extreme weather forecasting through more precise
modelling of atmospheric conditions, and optimizing renewable energy management by predicting
solar and wind power output based on meteorological data.

The recent development of complex neural networks has unlocked various applications in the field
of Computer Vision (CV) by enabling high accuracy image classification and target detection. CV
significantly enhances adaptation strategies by automating the monitoring of climate-induced
changes such as coastal erosion or habitat degradation, informing timely interventions. This is
particularly useful for processing a vast number of satellite images with a plethora of applications
from monitoring the evolution of coastal erosion or marine oil spills detection.

The application of ML to Natural Language Processing (NLP) has recently gained momentum for
representing and analysing human language computationally. The field of NLP is related to different
theories and techniques that focus on the interaction between computers and humans through
natural language. NLP is essential for analysing climate-related policy documents, facilitating climate
education, and enhancing public engagement through clear, actionable communication. NLP
methods enable Al systems to understand and process human language data from scientific reports,
policy documents, or social media to gauge public sentiment and disseminate information about
climate change effectively. This capability aids in synthesizing information, generating insights, and
enabling decision-making for climate action. While still in development, GenAl can simulate climate
models to predict future scenarios and develop adaptive strategies based on individual or regional
climate data.

GenAl systems are mostly trained using self-supervised learning, a paradigm where the system
optimizes its model to predict part of its input from other parts of its input without the need of
manual labelling of the training dataset as text, images, audio, or code as outputs in response to
prompts, based on learned patterns. By enabling the creation of general purpose services in text,
image, and audio creation companies developing those tools, and using a freemium business model,
enabled wide access to GenAl. Large Language Models (LLMs) are specialized for tasks like text
generation, summarization, translation, and question-answering, and excel at producing coherent
and contextually relevant text. ML includes models like linear regression for predicting continuous
variables, logistic regression for binary classification, and decision trees for both regression and
classification tasks. DL features models such as Convolutional Neural Networks (CNNs) for image
recognition, Recurrent Neural Networks (RNNs) for sequential data, and transformers for NLP.

In the realm of CV, models like You Only Look Once (YOLO) enable real-time object detection,
while Faster R-CNN is valuable for object detection and image recognition. NLP leverages models
like BERT (Bidirectional Encoder Representations from Transformers) for text classification
and sentiment analysis and LSTM (Long Short-Term Memory) for language modelling and
sequence prediction.
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Figure 1. Artificial Intelligence and its subfields or domains

This adaptability is particularly beneficial in addressing climate change mitigation and adaptation
challenges. For example, ML models are frequently used to solve optimization problems.



3. Methodology

The methodology of this paper includes a thorough literature review to assess the landscape of Al's
benefits, risks, and challenges, coupled with case study inputs provided by stakeholders involved in
Al for climate action in developing countries to gather diverse insights and experiences. These case
studies aimed to identify practical and impactful Al applications and capture a range of perspectives
relevant to ongoing efforts. In addition, the TEC facilitated a rigorous peer review process involving
multidisciplinary expertise to ensure the paper reflects diverse expert opinions and is aligned with
the challenges faced by developing countries, particularly SIDS and LDCs.

3.1. Justification of 2017-2024 Time frame

The timeline from 2017 to 2024 was based on several key factors. First, there have been rapid
technological advancements in Al, ML, and related fields during this period. Also, the proliferation of
Al research specifically targeting climate action has been particularly notable since 2017. Moreover,
global awareness and urgency about climate change have increased during 2017-2024.

3.2. Literature Review

A comprehensive literature review was conducted to provide an overview of the current state of
play regarding the utilization of Al for climate action in developing countries. In terms of the latter,
the review included recent theoretical and empirical studies that addressed these regions in the
context of Al for climate change, along with the existing best practices and lessons from developed
countries that they can adopt to maximize positive outcomes and overcome difficulties or obstacles
inimplementing Al solutions for climate action. The methodological approach to the literature review
encompassed the following steps:

Defining search criteria: This initial step involved setting precise search criteria to ensure a
comprehensive and targeted review of relevant literature. Keywords and phrases were carefully
chosen to capture a wide array of publications pertinent to the application of Al to climate action in
developing countries. The search criteria were aligned with the thematic focus of the paper, which
includes exploring current Al applications in climate mitigation and adaptation strategies, analysing
case studies from LDCs and SIDS, and evaluating the benefits and challenges of Al adoption, with
the aim of providing recommendations for policymakers and stakeholders to enhance Al's role in
advancing climate strategies in these regions.



Selecting databases: A selection of key academic databases was made to source relevant scholarly
articles, research papers, and reports. The databases chosen include Web of Science (WoS),
Scopus, ScienceDirect, SpringerLink, and Google Scholar. These databases were selected for their
comprehensive coverage of multidisciplinary literature on Al applications in climate action. The
literature review specifically prioritized studies conducted in developing countries, including LDCs
and SIDS, aligning with the thematic scope of this technical paper.

Inclusion and exclusion criteria: Publications from 2017 to 2024 were selected to ensure the review
reflects the most recent developments in the field. The focus is on peer-reviewed articles, research
papers, and reports that directly address the opportunities, applications, challenges, and risks of Alin
climate action. Peer-reviewed sources were prioritized. Non-peer-reviewed sources and publications
outside this time frame were excluded.

Search and selection: Relevant publications were identified through a comprehensive search across
selected databases using specific keywords and phrases related to Al applications in climate action.
The search included terms such as ‘artificial intelligence for climate mitigation/adaptation’ and
‘machine/deep learning for climate change’, among others. These publications were subsequently
scrutinized based on their abstracts and alignment with the research objectives.

Detailed analysis: A comprehensive review of selected scholarly articles, research papers, and
reports was conducted to extract nuanced insights into Al's benefits, risks, and challenges for
climate action in developing countries, with particular emphasis on LDCs and SIDS. Relevant
information - spanning Al applications, observed outcomes, challenges, geographical variations,
and policy implications - was systematically extracted and categorized according to predefined
themes. Each source underwent critical evaluation based on factors such as peer-reviewed status,
methodological transparency, relevance to the research objectives, and consistency of findings,
ensuring methodological rigour and credibility for a robust synthesis of findings.

Synthesis of findings: Insights from the analysis were then consolidated to create a cohesive
overview of Al's role in climate action across developing countries. This integrated perspective
identifies key patterns and relationships, serving as the foundation for subsequent sections of the
technical paper and informing discussions on strategies to optimize Al-driven climate solutions.

3.3. Call for Case Study Submissions

Acallfor case study submissions was made to arange of stakeholders actively involvedin Al for climate
action activities in developing countries, specifically targeting those engaged in research or the
implementation of Al-related projects relating to SIDS and LDCs. The call was extended to academic
researchers, practitioners, industry professionals, and policymakers who are directly involved
in the deployment and management of Al technologies in various domains. These submissions
were instrumental in gathering in-depth insights and first-hand accounts of the opportunities and
challenges associated with Al projects. The primary goal of these discussions was to unearth relevant
case studies that could be detailed in the thematic chapters of the paper, thereby providing concrete
examples of how Al is being applied in real-world settings in developing countries, particularly SIDS
and LDCs. This approach ensured that the paper was grounded in actual experiences and practices,
enhancing its practical value to stakeholders in similar contexts.
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3.4. Peer Review

A peer-review group was established to provide specific suggestions for improvements to the
draft technical paper. The composition of the peer-review group reflects a strategic effort to
include diverse knowledge and perspectives on Al for climate action. This group was comprised of
13 experts from academia, industry, NGOs, governmental bodies, and international organizations
who are recognized for their work in Al, climate science, policy implementation, and related issues.
The peer review of the draft technical paper was conducted in July 2024. Key aspects of their
involvementincluded:

- Validation of content: They scrutinize the draft to verify the scientific accuracy and relevance
of the content, ensuring that it reflects the latest advancements and understandings in the field.

+ Inclusion of case studies: Members propose additional case studies that illustrate successful
applications or ongoing initiatives of Alin climate action, particularly those that are pertinent to
the challenges faced by SIDS and LDCs.

+  Structural feedback: They provide critical feedback on the structure and presentation of the
paper to improve its readability, impact, and ability to communicate key messages effectively to
policymakers as well as practitioners and researchers.



4. Artificial Intelligence
for Climate Action in Developing Countries

This section offers a comprehensive analysis of existing literature and empirical evidence, focusing
on how Al algorithms have been leveraged in addressing climate challenges across different global
contexts, including both the benefits and risks associated with Al adoption in LDCs and SIDS while
examining the regulatory landscapes that influence Al deployment. The case studies have been
selected from inputs provided through the call for case study submissions and various literature,
including the CTCN knowledge product on Al technologies used in developing countries in the Asia—
Pacific region (CTCN & NIGT, 2024).

4.1. Early Warning Systems
Al and ML algorithms have been used for the following:

+  Flood warning systems: Al systems that use rainfall data, river levels, and weather patterns
collected by Internet of Things (loT) sensors to predict flood events have been effectively
implemented in several regions, providing communities with timely alerts and enabling proactive
measures to minimize damage.

- Food security early warning systems: Al systems that use data from weather stations,
satellite imagery, and soil sensors have provided harvest management insights and predictions
helping farmers optimize planting and harvesting times, manage resources more efficiently, and
anticipate potential issues such as pest infestations or adverse weather conditions.

* Hurricane prediction models: Combining satellite and remote sensing data with Al-
driven analysis improves the prediction of hurricane paths and intensity, enhancing disaster
preparedness and evacuation planning. Al-enhanced early warning systems have led to
improvements in forecast accuracy, longer lead times for warnings, and better resource
allocation for emergency response, as seen in recent hurricane seasons.

- Wildfire detection: Integrating data from IoT sensors on temperature, humidity, and wind
speed with Al algorithms has improved the ability to detect and predict wildfires. This early
detection allows for timely deployment of firefighting resources, minimizing the destruction
caused by these fires.
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CASE STUDY
UN EARLY WARNINGS FOR ALL INITIATIVE (EW4ALL)

Country: LDCs and SIDS - Ethiopia

Entities involved: Microsoft, Planet Labs PBC, University of Washington Institute
for Health Metrics and Evaluation (IHME), United Nations Office for Disaster Risk
Reduction (UNDRR)

Brief description

The Early Warnings for All Initiative, co-led by the World Meteorological Organization
(WMO) and the United Nations Office for Disaster Risk Reduction (UNDRR), with
collaboration from the International Telecommunication Union (ITU), and the
International Federation of Red Cross and Red Crescent Societies (IFRC), is a high-
level initiative to help to ensure that everyone on Earth is protected from hazardous
weather, water, or climate events through life-saving early warning systems by the
end of 2027. With human-induced climate change leading to more extreme weather
conditions, the need for early warning systems is more crucial than ever. Systems that
warn people of impending storms, floods or droughts are not a luxury but a cost-
effective tool that saves lives and reduces economic losses.

Early warning systems have helped decrease the number of deaths and have reduced
losses and damages resulting from hazardous weather, water or climate events. But
major gaps still exist, especially in SIDS and LDCs. The United Nations Secretary-
General, Anténio Guterres, in 2022 called for a global effort to ensure that early
warning systems protect everyone on Earth by 2027.

Climate Change Mitigation and/or Adaptation Impacts and Results

Microsoft, Planet Labs and the University of Washington Institute for Health Metrics
and Evaluation (IHME), are employing Al, satellite imagery, and predictive modeling
to accurately estimate the population sizes of communities that are at greatest risk
from climate change, as well as tracking population growth over time. Gaining a clear
understanding of where people live is foundational to taking preparatory measures
and providing essential resources.

In collaboration with UNDRR and other partners under the Early Warnings for All
Initiative, Ethiopia’s Ministry of Irrigation and Lowlands and the Ethiopian Al Institute
are utilizing Al-driven methods to identify communities at risk of disaster impacts. This
initiative is expected to expand to additional Early Warnings for All priority countries,
addressing evolving disaster preparedness needs.

Previous applications of Al and satellite imagery have demonstrated potential in
identifying at-risk communities. In collaboration with our non-profit partner SEEDS
in India, we apply Al and high-resolution satellite imagery to pinpoint homes that are
vulnerable to destruction in cyclone-prone areas. This enables SEEDS, their partners,
and local governments to focus their disaster preparedness and response outreach
efforts on the most high-risk regions, thereby saving lives and reducing damage.



Recent catastrophic events in Libya and Morocco have also underscored the critical
importance of swiftly comprehending the magnitude and specifics of affected
populations and regions. Time is of the essence in such situations. Recent applications
of high-resolution satellite data from Planet Labs PBC, combined with Al, have shown
potential in assisting affected communities. The initiative aims to support response
and recovery efforts by sharing this valuable information.

Challenges and Lessons Learned Regarding Development and Implementation

The journey of developing and implementing the EW4AIl Initiative is associated with
several key challenges and also provides valuable lessons:

The Importance of Comprehensive Global Mapping: One critical lesson learned
from this project is the stark realization that, in developed countries, there exists an
illusion that the maps are up-to-date and fully representative of where people reside.
However, the 2023 earthquake in Afghanistan revealed a significant gap: a majority
of those affected in rural areas were not accounted for on any existing maps. This
underscored the urgent need to ensure that every individual on the planet is mapped,
a goal that is now more attainable using Al and thanks to the availability of Planet’s
daily satellite data. This capability represents an innovative step towards achieving
comprehensive global mapping, which is crucial for effective disaster response and
resource allocation.

The Challenge of Accessible Al Tools in Disaster Response: Another key lesson from
this project concerns the accessibility of Al tools in disaster response scenarios. The
project highlighted that the tools required to run Al models in disaster-affected areas
remain too complex for end-users, particularly those in organizations that need
mapping data but lack in-house software development expertise. This gap was a
primary driver behind the development of Project HASTE (High-speed Assessment
and Satellite Tracking for Emergencies). Project HASTE is an open-source tool
designed to eliminate the need for advanced software development skills, enabling
a broader range of users to leverage Al for rapid and effective disaster response.
This innovation is anticipated to enhance the efficiency and inclusivity of disaster
management efforts worldwide.



CASE STUDY
Al4SIDS

Country: SIDS
Entities involved: The University of the West Indies, St. Augustine Campus, as
part of the Al for Climate Research Cluster within the TTLAB Data Science Group.

Brief description

The Al-Driven Climate Resilience Platform for SIDS (Al4SIDS) aims to enhance disaster
preparedness and resilience in SIDS through Al-driven solutions. By integrating real-
time data, predictive analytics, Al-driven models including Large Language Models
(LLMs), and loT technologies, it provides actionable insights for governments and
communities, enabling more effective disaster risk management with minimal human
intervention. This transformative platform, leveraging advanced Al technologies like
GPT-4 forreal-time dataanalysisand OpenAl's Whisper for speech-to-text conversion,
Al4SIDS provides localized weather alerts, educational tools, and predictive analytics
that empower communities to act before disaster strikes. This female-led project was
the winner of the Al Innovation Grand Challenge hosted by the Technology Executive
Committee in partnership with Enterprise Neurosystem.

Climate Change Mitigation and/or Adaptation Impacts and Results

Al4SIDS is currently under development, and it aims to integrate cutting-edge

technologies to offer comprehensive solutions, including:

+ Real-time Data Collection: Autonomous processing of data from IoT sensors,
social media, weather forecasts, and more.

Predictive Analytics: Advanced algorithms powered by GPT-4 predict climate
events, allowing governments and communities to prepare in advance.

+  Localized Alerts: Multi-channel alerts delivered via mobile, SMS, TV, and radio in
local languages.

+  Educational Resources: Tailored materials to raise community awareness and
improve disaster readiness.

+ Automated Feedback Loops: Enables governments to refine and optimize
disaster response strategies.



CASE STUDY

EARLY WARNINGS SYSTEM FOR CROP PHENOTYPING
AND FOOD AND NUTRITION SECURITY

Country: Kenya
Entities involved: : Local Development Research Institute (LDRI), Deutsche
Gesellschaft fur Internationale Zusammenarbeit (GIZ) - FAIR Forward.

Brief description

The cooperation between LDRI and GIZ's FAIR Forward enables smallholder farmers
to use Al technology for crop yield prediction and monitoring in Kenya. The Al Early
Warning System developed by LDRI, and FAIR Forward enhances harvest management
for smallholder farmers by delivering timely and accurate crop yield predictions. By
integrating data from weather stations, satellite imagery, and soil sensors, the system
provides precise, localized information, enabling farmers to anticipate adverse
conditions and implement proactive measures. This results in reduced crop losses
due to climate variability and optimized resource use. The system incorporates local
languages, including Kiembu, Luhya, Kikuyu, and Kiswahili, to enhance accessibility for
diverse farming communities, thereby broadening its potential impact.

Climate Change Mitigation and/or Adaptation Impacts and Results

The Early Warning System enables farmers to make informed decisions, thereby
minimizing crop losses and optimizing resource use in the face of climate variability.
By offering precise, localized information, the system helps farmers anticipate and
mitigate potential climate threats. For instance, monitoring 400 farms across 6
agro-ecological zones in Kiambu and Embu counties has demonstrated the system’s
capability to accurately predict crop yields and identify potential crop failures. The
integration of local languages — such as KiEmbu, Luhya, Kikuyu, and Kiswahili — ensures
that the system’s advice is accessible and actionable for a diverse range of farmers,
increasing its effectiveness across different linguistic communities. Additionally, the
project has created two open, quality datasets, including a land-use/farm boundary
estimation dataset and a temporal image-based dataset, which enhance the system’s
ability to provide actionable insights. The development of algorithms for analysing
earth observation data further supports crop-specific early warning mechanisms and
predictive climate-change recommendations.
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There are ongoing discussions to expand the system to Uganda and Tanzania, with
adaptations for new crops and regions, further supporting the agricultural community
across East Africa. This initiative addresses both immediate agricultural needs and
contributes to long-term food security and economic stability in the region.

Challenges and Lessons Learned Regarding Development and Implementation

Challenges encountered during the implementation of the initiative included ensuring
data accuracy from diverse sources, integrating Al models with local agricultural
practices, and addressing language barriers. The project highlighted the importance
of community involvement, continuous adaptation to local contexts, and robust
evaluation metrics. Expanding to new regions and crops required careful planning
and collaboration with local stakeholders. Extreme drought tendencies caused acute
food insecurity for 4.2 million people in Kenya, particularly in the Arid and Semi-Arid
Lands (ASALs). Farmers mistrusted inconsistent weather predictions and relied on
indigenous signs. Involving farmers in data collection has built trust and ensured data
accuracy. Training and equipping Village Based Advisors (VBAs) with smartphones
and the ODK software was critical for efficient data collection.
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4.2. Earth Observation

Through the use of satellites, EO data provide unequivocal evidence of the changes taking place on
Earth by monitoring parameters such as temperature, sea levels, atmospheric gases, ice, and forest
coverage. This scientific data supports our understanding of how the complex Earth system works
and aims to provide decision-makers with hard evidence of the need for putting forward adaptation
and mitigation plans.

In this context Al algorithms present a wide range of applications including transforming a satellite
image to a street map, cloud detection in order to reduce the volume of data to be downlinked to the
ground, autonomous detection, and classification of maritime vessels, as well as forest monitoring
and anomaly detection. The following areas highlight the key applications in this regard:

4.2.1. Examination of Sea Level Rise and Coastal Transformations

The accurate prediction and monitoring of sea level rise are important for the protection of coastal
areas and the planning of risk mitigation strategies. Various Al-based methods have been developed
to address this complex issue, significantly enhancing the accuracy and efficiency of sea level
predictions. Techniques like hybridization, ensemble modelling, data decomposition, and algorithm
optimization are identified as key strategies for enhancing sea level predictions. DL, in particular, has
shown superior performance due to its ability to automatically extract features and store memory,
making it more effective than traditional ML models.

The use of Al in monitoring sea level rise has been critical for SIDS like the Maldives, where rising
waters pose a significant threat to infrastructure and communities (UNFCCC, 2023). Al models
enhance the accuracy of sea level predictions by analysing satellite imagery and oceanographic
data in real time, allowing policymakers to develop proactive coastal defense strategies and disaster
preparedness measures.

Balogun and Adebisi (2021) integrate a broad range of ocean-atmospheric variables to predict
sea level variations along the West Peninsular Malaysia coastline using LSTM models. Their
findings suggest that atmospheric processes significantly influence prediction accuracy and that
combining oceanic and atmospheric variables significantly improves model performance. The
LSTM model, which incorporates both types of variables, demonstrates the highest accuracy
in most locations or regions, underscoring the importance of considering multiple influencing
factorsin sea level prediction.

Ishida et al. (2020) develop an hourly-scale coastal sea level estimation model using LSTM network.
The model includes the effects of gravitational attractions, seasonality, storm surges, and global
warming. Results show that the LSTM model accurately reconstructs these effects and improves
prediction accuracy when incorporating long-term duration temperature data, demonstrating the
robustness of DL in sea level forecasting.



CASE STUDY

SAFEGUARDING COASTAL ECOSYSTEMS: SOLOMON ISLANDS’
INTEGRATED COASTAL ZONE MANAGEMENT (ICZM) WITH AMAP

Country: Solomon Islands
Entities involved: Government of the Solomon Islands, CTCN

Brief description

The degradation of coastal ecosystems, such as mangroves, poses a significant
threat to the country’s biodiversity, food security, and resilience to climate change.
Mangroves play a crucial role in coastal protection, providing a natural barrier
against storms and erosion. To address these challenges, the G Government of
the Solomon Islands, with support from the CTCN's technical assistance project,
has implemented ecosystem-based adaptation solutions for mangrove protection.
The development of Al-based Mangrove Adaptive mapping tools in Pacific Island
regions (AMAP), the output of the CTCN technical assistance (TA), represents a
significant step in this direction.

AMAP processes satellite images, filtering out those with excessive cloud cover
and removing clouds from the remaining images. It then calculates a mangrove-
specific index to facilitate mangrove detection. The U-Net deep learning algorithm
is employed to classify mangroves based on the mangrove-specific index. This
enables the generation of detailed maps illustrating mangrove distribution, aiding
in conservation, restoration, and management efforts. AMAP leverages historical
climate data and climate change scenarios to develop models using various machine
learning algorithms. These models are then combined through an ensemble approach
to predict changes in vegetation species, including mangroves.

Climate Change Mitigation and/or Adaptation Impacts and Results

Improved Monitoring: AMAP facilitates the assessment of mangrove health and
distribution over time, supporting the identification of areas requiring protection
or restoration. Enhanced Management: The system equips managers with the
information needed to make informed decisions about conservation and adaptation
strategies, which ensures the sustainable management of mangrove ecosystems.

Climate Change Adaptation: AMAP's ability to predict future habitat distributions
under different climate change scenarios supports the development of proactive
adaptation measures to protect mangroves and the communities that depend on
them. Resource Optimization: By automating the analysis of satellite imagery and
providing detailed mangrove maps, AMAP saves valuable time and resources, allowing
for more efficient and effective conservation efforts.



4.2.2. Detection of Deforestation and Forest Degradation

Deforestation is a critical global environmental challenge with far-reaching implications for
biodiversity, climate change, and livelihoods. Satellite imagery and loT sensors, combined with
Al algorithms, enable the detection and monitoring of deforestation and forest degradation. Al
models analyse high-resolution optical and laser-based satellite images, often coupled with ground-
truth data, to identify changes in forest cover, detect illegal logging activities, and monitor forest
health over time. They can aid in mitigating climate change by implementing efficient and precise
sustainable forest management practices to decrease deforestation (Liu et al., 2021). They can
distinguish between different types of vegetation and land cover, making it possible to accurately
track the extent and rate of deforestation. Haq et al. (2024) explored the application of Al, IoT, and
remote sensing in addressing deforestation. These technologies facilitate real-time monitoring,
early detection, and intervention in activities like illegal logging, plant diseases, and forest fires. By
analysing the strengths and limitations of IoT, satellite imagery, drones, and Al algorithms, the study
underscores their potential in forest conservation.

Nguyen-Trong and Tran-Xuan (2022) focused on improving forest cover change detection using
Al-based remote sensing techniques in Viet Nam. Traditional methods, such as multi-variant
change vector analysis (MVCA) and normalized difference vegetation index, rely heavily on domain
knowledge to set threshold values, limiting their applicability. The study proposed a new method
utilizing multi-temporal Sentinel-2 imagery and a U-Net-based Al segmentation model to detect
coastal forest cover changes. This approach minimizes the need for extensive domain knowledge by
harnessing available datasets and ground-truth labels. The results showed a high accuracy of 95.4%
in detecting forest changes and outperformed the traditional MVCA method by 3.8%, highlighting
its effectiveness in forest resource management and planning in Viet Nam.

In Project Guacamaya (Elliott, 2024) in Colombia the CinfonlA Research Centre, the Instituto Sinchi
and Microsoft's Al for Good Lab are using best-in-class Al models to monitor deforestation and
protect the biodiversity of the ecosystem. This project combines satellite imagery, camera traps, and
bioacoustics data to monitor and analyse deforestation patterns rapidly and accurately reducing the
time required to identify deforestation hotspots, enabling quicker response and intervention. The
initiative supports conservation efforts and aids in the creation of precise maps and data crucial for
reforestation and carbon capture projects.

Dominguez et al. (2022) utilized a dense neural network for spatial data modelling and an LSTM
for temporal data on deforestation to forecast incremental deforestation and deforestation rates in
the Amazon rainforest. By comparing prediction results and continuously retraining the model with
new data, the authors were able to estimate future forest loss rates, enabling proactive measures.
Their approach effectively produced deforestation risk maps, which were validated in study areas in
Madagascar and Mexico and demonstrated the techniques’ reliability.
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Recent Al initiatives by World Resources Institute (WRI) have made open, high-resolution global
remote sensing datasets available for the first time. These maps provide a valuable basis for
monitoring and protecting forests worldwide, especially under newly introduced deforestation
regulations, such as the EU Deforestation Regulation (European Commission, 2023) that require
accurate forest monitoring for traceability. Lang et al. (2023) created a global canopy height map
with a 10 m ground sampling distance, utilizing a probabilistic DL model that combines GEDI LIDAR
data with Sentinel-2 optical imagery. This approach improves canopy-top height retrieval, quantifies
uncertainty, and enhances the mapping of tall canopies with high carbon stocks, which are critical for
effective carbon and biodiversity modelling. According to this map, only 5% of the global landmass
is covered by trees taller than 30 m, and only 34% of these tall canopies are located within protected
areas. This approach can support ongoing forest conservation efforts and foster advances in climate,
carbon, and biodiversity modelling.

However, there remains a need for more precise local adaptation and validation, particularly
through the integration of ground reference data collected through direct on-site observation, as
this enhances the accuracy of Al models by correcting biases, refining predictions, and ensuring
alignment with real-world environmental conditions. These ground reference data are crucial for
improving the accuracy and relevance of remote sensing data and ensuring that local conditions
and community needs are adequately considered. Such validation is important for the development
and refinement of existing Al approaches and global maps in the field of forest monitoring and
protection. For example, in Céte d'lvoire and Ghana, where cocoa cultivation is a significant driver
of forest loss, integrating ground reference data, such as field-based deforestation assessments
and satellite-derived land cover classifications, has proven important for accurate mapping and
understanding of the impact of agricultural expansion (Kalischek et al., 2023). Similarly, in Southeast
Asia, where commodity-driven deforestation affects carbon stocks and biodiversity, an automated
approach using DL for canopy height estimation from GEDI LIDAR and Sentinel-2 imagery has been
developed. This method provides high-resolution maps of canopy top height with an accuracy of
86%, classifies High Carbon Stock (HCS) forests and degraded areas and has produced the first high
carbon stock map for Indonesia, Malaysia, and the Philippines (Lang et al, 2021). The combination
of ground-based validation and Al-driven modelling in such applications strengthens the precision
of local adaptation strategies, demonstrating how Al can enhance forest monitoring and protection
through improved accuracy and classification of at-risk areas.
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CASE STUDY

Al FOR FOREST CONSERVATION: AI-GENERATED INDICATIVE
HIGH CARBON STOCK MAPS IN INDONESIA AND INDIA

Country: Indonesia

Entities involved: Deutsche Gesellschaft fur Internationale Zusammenarbeit
(GIZ) - FAIR Forward, JKPP (Network for Participatory Mapping), ETH Ziirich
Ecovision Lab, High Carbon Stock Approach (HCSA) foundation, Indonesian
government agencies, including Bappenas (Indonesia’s National Development
Planning Agency).

Brief description

In Indonesia, the FAIR Forward initiative has collaborated with JKPP, HCSA and
Bappenas to create an Al-driven, large-scale indicative map of high carbon stock
(HCS) forests. This project involves comprehensive field data collection (Figure 1)
across key regions such as Sumatra, Kalimantan, and West Papua. Biomass data are
collected from ground forest plots and validation points to ensure accurate mapping.
The project utilizes remote sensing technology and ML to identify and classify HCS
areas, which include primary forests, regenerating forests, and mixed agroforestry
landscapes. The HCS approach is currently being scaled to India with the Government
of Goa to build forest fire maps and accurate biomass maps. The project will create
open-source, Al-based tools for early forest fire detection and monitoring through
community engagement and volunteering. Given the global relevance of this subject,
the open tools will utilize remote sensing and ML to potentially create a global carbon
stock map.

Climate Change Mitigation and/or Adaptation Impacts and Results

The HCS maps developed through this initiative are crucial for Indonesia’s climate
change mitigation strategies by providing detailed carbon stock data that enhances
carbon accounting and conservation planning. For example, in Kalimantan, the project
has leveraged field plot data and remote sensing technologies to delineate extensive
high carbon stock forest areas. This approach not only aids in effective conservation
planning but also fortifies climate change mitigation strategies by prioritizing the
protection of both primary and regenerating forests.

The integration of Free, Prior, and Informed Consent (FPIC) alongside indigenous
knowledge enriches the conservation process, ensuring that local rights are respected
and that conservation strategies benefit from local expertise. This approach fosters
trust and collaboration between communities and conservationists, leading to more
sustainable and culturally sensitive outcomes.
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The open-access nature of these datasets also facilitates global research and
promotes international cooperation. By making data available for public use, the
initiative supports a broader understanding of forest dynamics and climate change
impacts. Collaboration with national and regional agencies ensures that this data is
effectively incorporated into land use planning frameworks, including Indonesia’s new
forest conservation policy. This policy uses HCS maps to guide sustainable land use
and forest protection, showing the project’s impact on shaping national strategies for
climate resilience and forest conservation.

Challenges and Lessons Learned Regarding Development and Implementation

The project faced several key challenges: Ensuring data accuracy across diverse
landscapes required tailored approaches and extensive field validation, highlighting
the need for collaboration with local experts to address landscape-specific issues.
Integrating traditional knowledge with advanced biomass data proved crucial yet
challenging, underscoring the importance of engaging local communities to enrich
the contextual understanding of forest ecosystems. Navigating the complexities
of Free, Prior, and Informed Consent (FPIC) and managing data sharing with local
communities involved addressing varied cultural, legal, and ethical considerations.
This demonstrated the necessity of a robust FPIC process, continuous community
engagement, and transparent data governance to build trust and ensure ethical
data use. Logistical challenges in field data collection, including coordinating with
local partners and managing activities in remote areas, emphasized the importance
of careful planning and strong partnerships. Additionally, the implementation of
advanced technologies like GIS and ML required significant capacity-building
among local stakeholders, revealing that training and support are crucial for effective
technology use. Overall, the project highlights the need for a collaborative approach
that integrates technology with local knowledge while ensuring ethical and effective
data practices.
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CASE STUDY: Al FOR FORECASTING AND PREVENTING
DEFORESTATION IN THE BRAZILIAN LEGAL AMAZON

Country: Brazil

Entities Involved: Amazon Institute of People and Environment (Imazon), Para
State Public Prosecutor’s Office (MPPA), Environmental Agency of Altamira-PA,
Fundo Vale, Climate and Land Use Alliance (CLUA), Microsoft Brazil

Brief description

The PrevislA project leverages Al and satellite imagery to detect and forecast
deforestation in Brazil's Legal Amazon. By integrating historical deforestation
data, topographical variables, and socio-economic indicators, the system predicts
deforestation risks with high precision. A key feature of PrevislA is its Al model that
annually detects the emergence of unofficial roads - strong predictors of deforestation
and fires - using Sentinel-2 imagery. Approximately 95% of deforestation occurs
within 5.5 km of roads, and 90% of fires within 4 km.

The initiative is structured around three pillars:

i) Al-driven road detection using high-volume satellite data;
ii) Risk forecasting and dissemination via a geospatial dashboard; and
iii) Collaborative enforcement with government partners.

A working group led by the Para State Prosecutor’s Office monitors deforestation
and acts on Al-generated alerts through fines, embargoes, or legal action.
Forecast accuracy has reached 73% within a 4 km radius, strengthening legal and
administrative enforcement.
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Figure 2: Training sessions on transferring geospatial technology
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Climate Change Mitigation and/or Adaptation Impacts and Results

PrevislA's Al forecasts have informed targeted enforcement actions in Par3, a high-
deforestation zone. Reports produced at municipal and property levels enable
prosecutors to identify illegal deforestation and initiate sanctions. Since 2024, risk-
based notifications are issued to landowners based on Al-detected alerts. The project
demonstrates a scalable model for integrating Al into legal action, forest governance,
and climate mitigation.

Figure 3: PrevislA forecast assessment against PRODES’ deforestation data
for 2021to 2024. The average accuracy for this period is 73% up to 4 km

Challenges and Lessons Learned Regarding Development and Implementation

Key lessons include the importance of predictive over reactive enforcement and the
need for continuous geospatial capacity-building within legal institutions. Scaling
the project across Brazil's Amazonian states requires financial sustainability, for
which REDD+ projects are being considered. Integrating adaptation plans to address
concurrent climate risks, such as extreme droughts, is essential to protecting both
forests and local communities.
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4.2.3. Detection of Pollution Sources

In addition to harming human health, pollution hinders sustainable ecological growth. Al and ML
algorithms applied to the analysis of satellite imagery and |oT data can streamline the identification
and monitoring of pollution and its sources by analysing the spectral signatures of various pollutants
and chemicals.

Remote sensing, in particular historical aerial photographs, have been useful in monitoring and
documenting changes at hazardous sites over time, providing reliable data for pollution detection
and mitigation (Popescu et al., 2024; Mertikas et al., 2021). Jia et al. (2021) developed a new
modelling method to forecast soil arsenic levels using high-resolution aerial imagery (HRAI). This
method employs cameras mounted on aircraft to capture high-resolution (0.1-0.5 m) images of
large areas. Four different ML algorithms were constructed to predict arsenic risk levels, with the
Extreme Random Forest (ERF) algorithm achieving higher level prediction and accuracy. Remote
sensing and aerial imagery provide continuous spatial data which, when combined with ML models,
produce highly accurate maps of hazardous substances in the environment - something that
standard geostatistical techniques could not achieve (Popescu et al., 2024).

One notable application of Al in environmental monitoring is the use of electronic nose (E-nose)
technologies. These technologies employ olfactory algorithms to analyse sensor data and detect
hazardous chemicals by their unique chemical signatures, allowing for immediate response to
potential threats (Jeong and Choi, 2022; Popescu et al., 2024). E-nose technologies have diverse
applications, including monitoring urban air quality, detecting industrial leaks, and identifying
hazardous materials (Jeong and Choi, 2022) including volatile organic compounds (VOCs), methane
and emissions from industrial activities.

Challenges remain, such as ensuring the accuracy and reliability of these sensors and finding optimal
methods to integrate them at scale into current environmental monitoring systems.

4.2.4. Biodiversity Monitoring and Assessment

Ecosystem biodiversity plays an important role in countering climate change, and Al systems can
support its monitoring and assessment by helping identify various species and habitats from satellite
images, providing data on species distribution and habitat health, usually a task that would require
manual data annotation and extensive time consumption without the support of Al.

Numerous examples demonstrate the growing use of Al in enhancing biodiversity monitoring
and conservation efforts. Rule-based systems like Artificial Intelligence for Ecosystem Services
(ARIES) are among the most common and popular tools for modelling ecosystem services (Bibri,
2024; Nishant et al., 2020). Empirical studies further validate these applications (Domisch et al.,
2019; Sharps et al., 2017; Willcock et al., 2018). As noted by Death (2015), ARIES integrates multiple
ML models to understand complex ecological relationships, thereby improving the accuracy and
effectiveness of biodiversity conservation strategies.

In addition to ARIES, other Al algorithms play a significant role in biodiversity and ecosystem health.
CNNs are used to analyse and classify high-resolution images for species identification and habitat
mapping, providing critical data for conservation efforts (Christin et al., 2019). Random Forest
(RF) algorithms are employed to model species distribution and predict biodiversity patterns by
integrating various environmental variables (Cutler et al., 2007). Moreover, Bayesian Networks (BN)
aid in understanding complex ecological interactions and predicting the impacts of environmental
changes on ecosystem health (Marcot et al., 2006).
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CASE STUDY

USING ML TO IDENTIFY PRIORITY SITES FOR INTEGRATING
MANGROVE RESTORATION WITH SUSTAINABLE AQUACULTURE
INTENSIFICATION

Country: Indonesia and the Philippines

Entities involved: This project brought together experts from academia,
conservation organizations, and the tech industry, including Arizona State
University, Conservation International (Cl), Konservasi Indonesia, and Thinking
Machines. Funding was provided by the Climate Change Al Innovation Grants
programme, with support from the Quadrature Climate Foundation, Schmidt
Futures, and the Future Earth Canada Hub.

Brief description

In this example of an Al-powered climate solution applied in LDCs, a diverse team of
academics, conservation practitioners, and tech industry experts developed a rapid
assessment tool, powered by Al and Earth observation data, to identify and validate
priority sites in Indonesia and the Philippines for deploying loans to shrimp farmers.
This aimed to improve shrimp production and restore mangroves in the Climate Smart
Shrimp (CSS) programme.

Shrimp aquaculture has grown 100-fold over the last 40 years, from an estimated
74,000 metric tonnes in 1980 to 7.5 million metric tonnes in 2022. This rapid growth
has come at the cost of critical coastal ecosystems, especially mangroves. While
deforestation rates have decreased from 0.21% (1996-2010) to 0.04% (2010-2020),
at least 35% of global mangroves were deforested in the late 20th century, and the
ecosystem services and climate benefits they provided remain lost.

Conservation International’s CSS programme supports communities’ livelihoods and
food security while also improving coastal resilience and adaptation to climate change.
The initiative provides resources for small- and medium-sized farmers to sustainably
intensify production on a portion of their farm in exchange for mangrove restoration
on the remainder of the farm. This enables smaller farms to be more competitive
within the global commodity shrimp market while providing sustained funding and
opening available parcels for coastal mangrove restoration. But not all aquaculture
farms are suitable for such an approach.

This project used ML and Earth observation data to identify and classify aquaculture
farmsthatare abandoned or low productivity. The team then combined thisinformation
with open data on sea level rise, flood risk, infrastructure access, historical mangrove
cover, and other attributes to identify viable sites for CSS. Identifying a pipeline of
optimal sites accelerates Cl's ability to engage farmers, industry, and communities,
and scale CSS.
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Climate Change Mitigation and/or Adaptation Impacts and Results

The site assessment tool enables Cl and its project partners to apply CSS more
efficiently and to effectively support livelihoods and food security in shrimp
aquaculture geographies while providing climate mitigation, climate adaptation, and
coastal resilience benefits for coastal communities.

The site assessment tool enables Cl and its project partners to apply CSS more
efficiently and to effectively support livelihoods and food security in shrimp
aquaculture geographies while providing climate mitigation, climate adaptation, and
coastal resilience benefits for coastal communities.

While the tool was designed to streamline the implementation of CSS, it can also guide
conservation practitioners on where to focus other nature-based solution approaches.
The tool can identify areas that are suitable candidates for restoring mangroves
to increase forest cover and are also viable for intensifying shrimp aquaculture to
contribute towards food security and support local livelihoods.

While the toolinits current form helps Cl to rapidly evaluate the hundreds of thousands
of potential hectares where CSS might be implemented and find optimal locations,
slight updates or changes to the scoring criteria could make this tool applicable in a
wide range of coastal restoration applications.

Challenges and Lessons Learned Regarding Development and Implementation

In development and implementation of the tool, we encountered several challenges
and learned an important lesson, namely:

Public data on aquaculture production in LDCs are not available, restricting
the use of potential Al approaches. We spent substantial resources developing
training datasets for ML.

+  Spatially explicit data on land cost and land tenure are also not available for many
LDCs. As Cl has developed more CSS sites, it has become clear that these two
variables are critical determinants of project viability. We attempted to use proxy
data related to land value and ownership, but we had insufficient resources to
develop robust datasets.

Al tool developers need to consider unintended uses prior to product development.
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The study by Hirn et al. (2022) investigated the complex patterns of species coexistence in diverse
ecological communities using GenAl. Understanding these patterns is crucial for biodiversity
conservation, yet traditional experimental approaches struggle with the complexity caused by
indirect interactions among species. To address this challenge, the authors applied cutting-edge
ML techniques, specifically Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAES), to predict species coexistence in vegetation patches.

The GANs were highly effective in reproducing realistic species compositions and identifying
species’ preferences for different soil types. Similarly, the VAEs demonstrated high accuracy,
achieving above 99%. The study revealed that high-order species interactions tend to suppress
the positive effects typically seen in simpler interactions. By analysing artificially generated
data, the researchers could identify pioneer species capable of promoting greater biodiversity
in distinct patches. The findings highlight the potential of GenAl in advancing ecological research
by overcoming the limitations of traditional methods and offering new insights into species
coexistence and community assembly. This approach opens opportunities for deeper exploration
of biodiversity maintenance in complex ecosystems.

4.2.5. Nuanced Land Use Alterations

Land and climate interact in complex ways through multiple biophysical and biochemical feedback.
Changes in land use patterns significantly impact climate dynamics through alterations in carbon
storage, GHG emissions, and ecosystem resilience. Al-powered analysis of satellite imagery can
speed up the detection of subtle changes in land use, such as urban expansion, agricultural activities,
and infrastructure development across different spatial and temporal scales. By comparing these
datasets, spatial land planning becomes more efficient, enhancing the rationality and feasibility of
planning schemes (Chen et al., 2023). Moreover, aerial imaging analysis to identify physical surface
materials or human land use highly advance urban land use investigations, providing substantial cost
and time savings (Chen et al., 2023). Al systems can be leveraged to enhance land classification by
making it possible to analyse a vast quantity of data, recognizing patterns and so facilitating decision-
making. Kerins et al. (2020) demonstrated the viability of automated urban land use/land cover
mapping using ML models and satellite imagery. The researcher developed customized models for
11 cities in India and used these models to generate comprehensive maps of the corresponding cities
at multiple points in time. By tracking these changes over time, Al systems aid in understanding the
impacts of human activities on the environment and in planning sustainable land use practices.

AlDousari et al. (2022) utilized Support Vector Machines (SVMs) and Artificial Neural Networks
(ANNs) to evaluate and predict changes in land use and cover in Kuwait. Nguyen et al. (2021)
proposed a method for openly accessing existing data and Sentinel-2 satellite imagery through ML
algorithms, subsequently using land use maps to study the impact of land use changes on sustainable
development through both local and global indicators. Recent studies underscore the growing role
of ML in environmental management in land-use classification. Talukdar et al. (2020) focused on the
application of ML classifiers for satellite-based land-use and land-cover classification, highlighting
the technology’s ability to enhance accuracy and efficiency in monitoring changes in terrestrial
ecosystems. Nonetheless, DL models are highly effective for categorizing land cover or land
use and can achieve high accuracy in classifying different types of habitations (Alem and Kumar,
2020). CNNs, which excel in many image classification tasks, outperform SVMs, RF, and K-Nearest
Neighbours (KNN) in land cover and land use classification (Carranza-Garcia et al., 2019).
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A recent empirical study by Guzder-Williams et al. (2023) proposed a ML method to automate the
production of intra-urban land use maps using Sentinel-2 imagery, which is particularly beneficial
for developing countries, as well as LDCs and SIDS. The novel neural network architecture created
for this task produced 5-m resolution land use maps for a global sample of 200 cities, spanning 78
countries and various population sizes. The model reduces computational resources. The main results
showed high accuracy, with tier-1and tier-2 achieving 86% and 79% accuracy, respectively, and tiers
3 and 4 achieving 75% and 71%. Additionally, a roads-only model compared favourably with existing
datasets, and an Informal Settlement Classifier accurately classified 87% of informal settlements.
These findings demonstrate the potential for regularly updated, global intra-urban land use maps at
a fine resolution to support urban planning and policymaking in resource-limited regions.

Another empirical study by Bindajam et al. (2021) investigated the dynamics of Land Use and Land
Cover (LULC) changes and their impact on ecosystem services value (ESV) from 1990 to 2028
in Abha-Khamis, Saudi Arabia. Using SVM classification, they mapped LULC for 1990-2018 and
analysed changes using a delta change method and a Markovian transitional probability matrix (TPM).
The authors found that urban areas increased by 334.4% from 1990 to 2018. The TPM indicated that
built-up areas were the most stable LULC type, while agricultural land, scrubland, exposed rocks,
and bodies of water were increasingly converted into urban areas. The study also predicted future
LULC for 2028 using an artificial neural network-cellular automata model, indicating significant urban
expansion at the expense of natural ecosystems.

4.2.6. Monitoring of Carbon Dioxide and Methane Emissions

Al algorithms can also be leveraged to enhance the analysis of vast amounts of data on carbon
dioxide (CO2) and methane emissions collected by remote sensing technologies. By providing real-
time insights they could be beneficial in verifying compliance with emission reduction commitments,
understanding emission sources, and guiding policy decisions to address climate change effectively.
Das et al. (2020) proposed a robot designed for deployment in unknown and uneven environments,
capable of recognizing hazardous gases such as CO2 and liquefied petroleum gas with an average
accuracy of 98%. The robot is equipped with Al to avoid collision obstacles, detect the presence of
humans, and map the locations of detected gases in real-time using a GPS module. Jualayba et al.
(2018) designed a monitoring and warning system equipped with sensors for hydrogen, liquefied
petroleum gas, and methane. This system uses colour-coded indicators to display safety statuses
based on detected gas levels. When a medium level of gas is detected, an exhaust fan is activated.
At dangerous levels, an alarm buzzer is triggered to alert people about the gas leakage and the need
to reduce the concentration of the detected gas.

Lietal. (2021) focused on the optimization of internal combustion engine performance using a novel
approach that couples ANN with GA. Their method, targeting the Direct Dual Fuel Stratification
(DDFS) strategy, improved the accuracy and stability of performance predictions and was more
efficient than traditional methods. The ANN-GA approach achieved higher fuel efficiency and lower
nitrogen oxide emissions while reducing computational time significantly — by over 75% compared
to the conventional Computational Fluid Dynamics-Genetic Algorithm (CFD-GA) methods.
This efficiency stems from the ANN'’s lower computational demands and its ability to manage
large datasets and variable parameters effectively, highlighting its potential to enhance engine
performance optimization further. Overall, the ANN-GA method demonstrates superior accuracy,
efficiency, expandability, and flexibility in optimizing the DDFS strategy.
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ML is increasingly being applied to enhance various CO2 management processes. Indeed, the
increasing urbanization and industrial activities in metropolitan areas have escalated air pollution
levels, necessitating advanced air quality prediction and monitoring systems. Schirholz et al. (2020)
developed a context-aware air quality prediction model using LSTM DNN, integrated with data from
pollution sources and users’ health profiles. This model, implemented through the My Air Quality
Index (MyAQl) tool in Melbourne, demonstrated high precision (90-96%) in predicting air quality,
displaying its adaptability to individual health conditions. Similarly, Sowmya and Ragiphani (2022)
proposed an air quality monitoring system leveraging loT devices and Al tools to manage air pollutants
effectively. Their system employs sensors to measure harmful gases and utilizes SVM algorithm for
future air quality predictions. This approach aims to enhance public awareness and enable proactive
measures to maintain indoor air quality. Almalawi et al. (2022) employed linear regression, support
vector regression (SVR), and gradient boosting decision trees to develop a model for analysing the
air quality index using sensor data. Alimissis et al. (2018) utilized ANN and multiple linear regression,
discovering that ANNs offer computational advantages, especially when the density of air quality
monitoring networks is limited.

Furthermore, these can contribute to achieving carbon neutrality by reducing GHG emissions and
mitigating climate change (Jahanger et al., 2023; Sahil et al., 2023). This entails optimizing energy
use, improving efficiency in various sectors, and enhancing the deployment of renewable energy
technologies. Al applications can also help in monitoring and managing carbon footprintsinindustries,
cities, and across energy systems, making processes more sustainable and less carbon intensive.
Additionally, Al systems can predict the behaviour of CO2 in storage sites and monitor these sites
to ensure the permanent trapping of the gas underground (Kushwaha et al., 2023). Furthermore,
Al's ability to develop innovative carbon storage methods, such as creating promising materials for
sustainable CO2 management, represents another significant strength (Zhang, Z. et al., 2022).

The main challenges and risks that can be encountered while deploying Al systems for the use cases
presented in Section 4.2 are:

- Data Scarcity: Sparse sensor networks and limited historical data can reduce the accuracy of
analyses and early warning systems.

« Technical and Financial Constraints: High costs for satellite data or advanced computing
hardware/software can be prohibitive.

«  Connectivity and Power Reliability: Unreliable internet or electricity limits the real-time
transfer and processing of EO data.

+ Capacity Gaps: Shortage of local experts who can interpret data and maintain analytical systems.
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4 3. Climate Simulation and Prediction

Machine learning (ML) can be leveraged to improve climate modelling by enhancing the accuracy of
weather predictions and understanding climate change impacts. It helps identify patterns in climate
data, aiding decision-making and policy development. With the vast data from Earth observation
satellites, Al and ML have become essential for weather forecasting and disaster response. These
advanced algorithms predict extreme weather events like hurricanes and floods by analysing
historical and real-time data, highlighting the importance of improved observational techniques.

4.3.1. Climate Modelling

NASA and IBM Research have collaborated to develop the Prithvi foundational model for weather and
climate, an Al-powered tool designed to improve weather and climate forecasting at both regionaland
global scales (Barnett, 2024). This model leverages NASA's extensive datasets, such as MERRA-2,
and uses Al to detect patterns that can be applied across various weather and climate scenarios.
The modelis part of NASA's strategy to produce actionable, high-resolution climate projections that
can inform decision-making for communities, organizations, and policymakers. The Prithvi model
enhances applications like severe weather detection, localized forecasts, and improving spatial
resolution in climate models. Developed in collaboration with IBM, Oak Ridge National Laboratory,
and other partners, the model is designed to scale across regions while maintaining resolution and
capturing complex atmospheric processes even with incomplete data. The Prithvi model is one of
several in the Prithvi family that aligns with NASA's open science principles to democratize access to
scientific data. It will be available later this year on Hugging Face, a platform for ML and data science.
This initiative is a step forward in making NASA's vast Earth observation archives more accessible and
impactful for the global community.

Al's capabilities in data processing and collection enhance the accuracy of digital model predictions,
bridging the gap between these models and real-world conditions, thus leading to more accurate
forecasts of future outcomes (McGovern et al., 2017). High-quality climate predictions are important
for understanding the impacts of various GHG emission scenarios and for developing effective
strategies to mitigate and adapt to climate change (Bonan and Doney, 2018).

Al systems can aid in mitigating climate change by improving the prediction of extreme weather
events. Weather forecasting is fundamentally a data issue, and as the volume of data analysed by Al
increases, its accuracy will improve, thereby reducing the impacts of extreme weather events (Chen
et al., 2023). By analysing vast amounts of historical weather data, Al models can identify patterns
and anomalies, enabling the development of more accurate forecasting models. These improved
predictions help in better preparing for and responding to severe weather, ultimately reducing
potential damage, and enhancing resilience. Indeed, advanced ML and DL techniques are being
widely applied to identify complex patterns and correlations that may not be immediately apparent
to human analysts. For example, ML techniques such as RF and SVM can be used to analyse climate
data to predict weather patterns and extreme events. DL techniques, including CNNs and RNNs, are
particularly effective in processing large volumes of data and capturing intricate temporal and spatial
dependencies, which are essential for accurate climate modelling and prediction, thereby improving
early warning systems. To do so, they process data from various sources, including satellite imagery,
weather station records, and ocean buoys, to generate comprehensive datasets. Evidence suggests
that incorporating big data mining and neural networks into the weather prediction workflow can
enhance the accuracy of forecasts (Shultz et al., 2021). This revolves around whether DL approaches
could entirely replace current numerical weather models and data assimilation systems. Integrating
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Al with numerical climate simulation data can effectively bridge observation data gaps, thereby
reducing uncertainty and biasin climate predictions (Kadow etal., 2020). Existing weather forecasting
technologies based on physical and numerical models are often inaccurate and limited, as they do
not account for variables like global warming, whereas Al technologies can predict long-term climate
change and short- to medium-term extreme weather events more effectively (Jeon and Kim, 2024).

Lopez-Gomez et al. (2023) focused on improving extreme heat forecasts using neural weather
models (NWMs) with convolutional architectures. Trained on historical data, these models predicted
surface temperature anomalies globally for up to 28 days. The study found that using custom loss
functions tailored to emphasize extremes significantly improved heatwave prediction accuracy. This
method also maintained general temperature prediction skills and showed better performance than
existing models’ overall lead times.

From an empirical perspective, real-world implementations of Al and ML techniques are increasingly
proving their value in enhancing climate prediction and disaster preparedness. Kagabo et al. (2024)
developed a precise rainfall forecast model using ML techniques, specifically LSTM networks, to
predict extreme rainfall events in Rwanda. The study analysed extensive historical rainfall data and
found that LSTM outperformed other algorithms such as CNNs and GRUs, achieving up to 99.8%
accuracy. The research emphasized LSTM's ability to handle datairregularities, significantly improving
forecast results and enhancing disaster preparedness and risk mitigation efforts in Rwanda. Similarly,
Al is being leveraged through a United Nations initiative in Africa to support communities vulnerable
to climate change in countries such as Burundi, Chad, and Sudan (WEF, 2024). The IKI Project
employs Al technology to forecast weather patterns, enabling communities and authorities to better
prepare for and adapt to climate change impacts.

4.3.2. Climate Scenario Simulations and Adaptation Strategies

Al drives significant improvements in the simulation of climate scenarios, offering robust tools
for evaluating adaptation strategies and providing decision-makers with actionable insights. By
harnessing advanced ML algorithms and data analytics, Al systems enhance the accuracy and
efficiency of climate models by processing vast amounts of climate data, identifying complex
patterns, and predicting future climate conditions under various scenarios. These capabilities
enable researchers to explore potential impacts of different environmental policies and practices,
thereby aiding in the development of effective and responsive climate action plans. Moreover, Al-
driven simulations facilitate a deeper understanding of regional climate changes, aiding in tailoring
adaptation measures to local contexts and improve resilience against climate-related risks.

Bonan and Doney (2018) examined recent advancements in ESM that incorporate both terrestrial
and marine biospheres. These models effectively capture the interactions between the physical and
biological components of the Earth System (ES), providing valuable insights into climate impacts on
critical societal issues such as crop yields, wildfire risks, and water availability. However, despite these
advances, further research is needed to address model uncertainties and improve the translation of
observations into abstract model representations.

In the study by Bowes et al. (2019), LSTM networks and RNNs were used to forecast groundwater
table responses to storm eventsin Norfolk, Virginia. Similarly, Jeon et al. (2018) utilized deterministic
and decision support models to evaluate the performance of BMPs under various climate scenarios,
refining BMPs for future conditions. In urban settings, Skiba et al. (2018) used artificial neural
networks to model the economic dependence between urban policy and energy efficiency, offering
insights for energy-efficient urban development.
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Van der Woude et al. (2024) introduced an innovative application of ANN to forecast biocapacity and
ecological footprint, specifically focusing on forest land indicatorsin Latin America and the Caribbean
until 2030, aligning with SDGs. By forecasting these indicators, the study sought to aid in strategic
planning and decision-making processes that enhance environmental sustainability and support
climate change adaptation efforts in the region. It serves as a key blueprint for other developing
regions seeking to strengthen their environmental sustainability and climate mitigation efforts.

While many arid regions are found in less developed countries, where the challenges of water scarcity
and harsh living conditions can exacerbate developmental issues, it is important to note that arid
regions can exist in both developing and developed countries. Adikari et al. (2021) evaluated and
compared the effectiveness of three prominent Al-based approaches — CNNs, LSTM, and Wavelet
decomposition functions combined with the Wavelet Adaptive Neuro-Fuzzy Inference System
(WANFIS) - in forecasting floods and droughts in arid and tropical regions. The study measures
fluvial floods by the run-off change in rivers and meteorological droughts using the Standard
Precipitation Index (SPI). The findings reveal that the CNN model excels in flood forecasting, while
the WANFIS model shows superior performance in meteorological drought forecasting, irrespective
of the climatic region. Additionally, the CNN model demonstrates enhanced accuracy in applications
with multiple input features.

CASE STUDY

FORTIFYING ETHIOPIA'S NATIONAL PARKS: BUILDING RESILIENCE
AGAINST WILDFIRES AND EXTREME WEATHER

Country: Ethiopia

Entities involved: This project includes a wide range of stakeholders: national
meteorological and hydrological services in target countries and regions; NGOs
‘on the ground,” such as the Red Cross Climate Centre, civil society bodies, civil
protection authorities, and first responder organizations, local communities,
academic institutions; and research organizations, national and regional
governments, private sector and dedicated lighthouse stakeholders such as African
Union, UNEP, UNDP, and ESA. All these stakeholders will benefit from MedEWSa's
aim of translating complex climate information into actionable knowledge.

Brief description

Natural hazards, such as extreme weather events, are exacerbated by anthropogenic
climate change. As a result, emergency responses are becoming more protracted,
expensive, frequent, and stretching limited available resources. This is especially
apparent in rapidly warming regions. The MedEWSa (Mediterranean and pan-
European Forecast and Early Warning System against natural hazards) project
addresses these challenges by providing Al-powered novel solutions to ensure timely,
precise, and actionable impact and finance forecasting, and early warning systems
that support the rapid deployment of first responders to vulnerable areas. .
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Climate Change Mitigation and/or Adaptation Impacts and Results

Through eight selected pilot sites (areas in Europe, the southern Mediterranean, and
Africa with a history of natural hazards and extreme events with cascading effects),
four MedEWSa twin sites will be created:

1. Twin #1: Greece (Attica) - Ethiopia (National Parks): wildfires and extreme
weather events (droughts, wind)

2. Twin #2: Italy (Venice) - Egypt (Alexandria / Nile Delta): coastal floods and
storm surges

3. Twin #3: Slovakia (Kosice) - Georgia (Thilisi): floods and landslides

4. Twin #4: Spain (Catalonia) — Sweden (countrywide): heatwaves, droughts,
and wildfires.

The twins will bridge areas with different climatic/physiographic conditions, yet
subject to similar hazards, and are well positioned to deliver long-term bidirectional
knowledge transfer. They will demonstrate the transferability and versatility of the
tools developed in MedEWSa.

Challenges and Lessons Learned Regarding Development and Implementation

MedEWSa will improve the current Decision Support Data System by:

+  Automatizing the process-chain from identification of active fire to real-time
simulations, to assessing high risk areas, to producing alerts, and consequently
optimizing the response time.

+ Enhancing the spatiotemporal information by improving the spatial resolution
especially in the urban-rural interface and developing indicators at the sub-
seasonal to seasonal timescales.

+ Advancing models and systems regarding the fire spread capability for large-
scale domains (mixed wind scenarios, simulation time optimization), and the
forest fire danger rating system.

+ Standard Operating Procedures and update of the Forest Fire Bulletin to trigger
early actions (patrolling areas at risk) and rapid deployment of first responders
mitigation measures (prescribed burnings), and preparedness activities.

Table 1 presents an overview of various adaptation strategies facilitated by Al. It details themes, Al
applications, specific aims, findings, and contributions of various studies related to Al-driven climate
adaptation strategies. It includes a wide range of applications and scenarios that highlight the
potential of Alin climate action. The strategies assessed range from Al-driven agricultural practices
to advanced disaster response systems. The integration of Al with IoT is known as AlaT.

Table 1 serves as a valuable tool for decision-makers to compare the most viable Al-supported

adaptation strategies, ensuring informed and strategic planning in mitigating the impacts of climate
change in LDC and SIDS.
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Table 1: Studies on adaptation strategies using Artificial Intelligence models

Al Applications Objectives Key Contributions Citations

Groundwater table | LSTM Networks, To model LSTM networks Bowes et al.

forecasting RNN and forecast outperformed RNNs (2019)
groundwater table | in predictive accuracy;
response to storm | effective for real-
eventsinacoastal | time forecasting of
city. groundwater table

levels.

Best management | Deterministic To evaluate SWAT and NSGA-I Jeonetal.

practices (BMP) Models (SWAT), changesin helped refine BMPs (2018)

performance Decision Support BMPs on total for future climate

in agricultural Models (NSGA-II) phosphorus loads scenarios; highlighted

watershed under different the need for adaptive
climate change BMPs.
scenarios.

Climate change Statistical To predict climate Demonstrated potential | Skiba et al.

impact on crop Downscaling, GA change impacts for energy-efficient (2017)

yield on pearl millet renovations in urban
yield using genetic | settings using neural
algorithms. networks.

Flood analytics AloT, CNN To advance AloT prototype Samadi
flood analytics improved flood (2022)
using AloT in warning and situational
flood situational awareness; successfully
awareness and risk | tested during hurricane-
assessment. driven floods.

Drought ANN, ANFIS, SVM To compare ANN, SVM model provided Mokhtarzad

forecasting ANFIS, and SVM the highest accuracy etal. (2017)
modelsin drought | in drought forecasting
forecasting. compared to ANN and

ANFIS.

Crop yield DNN, To model and ML approach showed Crane-

prediction Semiparametric predict crop yields | less severe negative Droesch
under different impacts on corn (2018)
climate change yield than traditional
scenarios using ML | methods, especially in
methods. warmest scenarios.

Urbanization and Dynamic To investigate the WRF simulations Yeung et al.

climate impact Simulation, impact of future indicated significant (2020)

Weather Research
and Forecasting
Model (WRF)

urbanization on
local climate under
different climate
change scenarios.

warming and public
health risks due to
urbanization and climate
change by 2030.
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4.3.3. The Role of Artificial Intelligence in Decreasing Energy
Consumption in Climate Modelling

Significant energy savings can be achieved by creating software frameworks and libraries tailored
to minimize energy consumption in Al. Techniques such as optimized runtime scheduling, sparse
modelling, ensemble modelling, task parallelization, and resource-aware programmming can enhance
software performance while reducing energy demands. These optimizations not only benefit the
environment but also lead to more cost-effective and scalable Al solutions.

Forexample, sparse modelling techniques focus onidentifyingand utilizing the mostrelevant variables
and data points, thus simplifying the models. This leads to reduced computational complexity,
faster simulations, and efficient data processing. By focusing only on key variables, sparse models
require less computational power, thus conserving energy. Simplified models run faster, reducing
the time and energy needed for simulations. In addition, sparse models streamline data handling,
minimizing the energy required for data storage and analysis. Given the complexity of climate and its
varied impacts on populations, Grames and Forister (2024) employed a Bayesian sparse modelling
approach to select from 80 climate metrics. They applied this method to 19 datasets covering bird,
insect, and plant populations. For phenological datasets, mean spring temperature often emerged
as a key climate driver. This climate variable selection approach is valuable for identifying relevant
climate metrics, especially when there is limited physiological or mechanistic information, and is
applicable across different studies on population responses to climate. Overall, sparse modelling
makes climate simulations more efficient, leading to significant energy savings.

Zust et al. (2021) presented an ensemble DL method for forecasting sea levels in the Adriatic Sea,
which surpasses traditional ocean circulation models in terms of both accuracy and computational
efficiency. By using a diverse set of models, researchers can identify and prioritize the most accurate
and efficient ones, reducing the need for extensive runs of less effective models. More accurate
predictions reduce the need for repeated simulations, saving computational energy.

Enhancing efficiency in Al research will reduce its carbon footprint and make it more accessible,
ensuring that DL studies are not limited to those with the largest financial resources (Schwartz et
al., 2020). The Al community has recently started to address the environmental impacts of ML/DL
programmes. Research highlights the energy consumption and carbon footprint associated with
training DL, NLP, and GenAl models alike. The concept of Green Al or Computing was proposed to
encourage more environmentally friendly Al practices (Raman et al., 2024; Schwartz et al., 2020).
Green Al denotes “Al research that yields novel results while taking into account the computational
cost, encouraging a reduction in resources spent” (Schwartz et al., 2020). Researchers are focused
on optimizing algorithms, hardware, and data centre operations to lower energy consumption and
minimize the carbon footprint of Al systems (Wheeldon et al., 2020).

The recent comprehensive study by Raman et al. (2024) focused on Green Al, utilizing thematic
analysisand BERTopicmodellingtoexplore thisfield. The studyidentifiedsignificantadvancements
in Green Al, particularly in the areas of energy optimization and sustainable computational
practices. It highlighted three main thematic clusters: responsible Al for sustainable development,
advancementsin Green Al for energy optimization, and big data-driven computational advances.
Among these, the study emphasized the importance of sustainable neural computing and
cognitive Al innovation, showcasing how Al technologies can be optimized for energy efficiency
and reduced environmental impact. These findings underscore the critical role of Green Al in
promoting environmental sustainability within the Al research community, providing valuable
insights for future research and policymaking aimed at integrating sustainability into Al research
and development, including climate modelling.
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Furthermore, the Al community has developed various tools to evaluate the energy consumption
of ML models. For example, Anthony et al. (2020) highlighted the energy consumption and carbon
footprint associated with training NLP models. Henderson et al. (2020) underscored the need for
systematic reporting of the energy and carbon footprints of ML practices. The authors introduced a
framework that facilitates this reporting by providing a simple interface for tracking real-time energy
consumption and carbon emissions, along with generating standardized online appendices. This
framework is utilized to create a leaderboard for energy-efficient reinforcement learning algorithms,
aiming to incentivize responsible research in this field and serve as a model for other areas of ML.
Based on case studies using this framework, the authors propose strategies for mitigating carbon
emissions and reducing energy consumption. Lacoste et al. (2019) proposed methods to quantify
the carbon emissions of ML, while Lannelongue et al. (2021) introduced the concept of Green
Algorithms to measure the carbon emissions of computational tasks. These impacts are primarily
expressed in terms of energy consumption and associated greenhouse gas (GHG) emissions.

The main challenges and risks that can be encountered while deploying Al systems for the use cases
presented in Section 4.3 are:

* Model Bias: Models trained on global datasets may not capture local climate nuances, leading to
inaccurate regional forecasts.

- Computational Demands: Running complex climate models often requires high-performance
computing infrastructure, which can be lacking.

« Lack of Local Data: Insufficient regional data inputs, such as rainfall patterns or sea-level
measurements, reduce model accuracy.

- Dependence on External Providers: Reliance on foreign institutions for modelling expertise can
result in limited local capacity-building.

4.4. Resource Management

Effective resource management is important for sustainable development and directly impacts
climate change mitigation and adaptation efforts. Al-enabled interventions have shown significant
promise in optimizing the management and preservation of natural resources. Al systems can be
leveraged to improve resource management practices across various domains and contribute
to broader climate resilience strategies by integrating advanced data analytics, ML, and real-
time monitoring.

4.4.1. Artificial Intelligence Interventions in Fisheries Management and
Marine Life Preservation

Human activities pose considerable threats to marine ecosystems, making effective management
and conservation crucial. Al technologies have advanced the ability to monitor and manage fish
stocks and Marine Protected Areas (MPAs). The application of Al and automation can improve
marine conservation efforts, particularly in safeguarding marine ecosystems and defining MPAs
(Seyma, 2023). ML algorithms analyse data from satellite imagery, sonar, and other remote
sensing technologies to track fish populations and their movements. This allows for more accurate
assessments of fish stock levels, which is key to sustainable fisheries management. Marine life
preservation would also benefit blue carbon strategy in LDCs and SIDS that utilizes coastal
ecosystems for carbon sequestration.
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Al research has improved marine resource management, encompassing water pollution monitoring,
pollutant tracing, pollution reduction and prevention strategies, acidification mitigation, and habitat
and species protection through various Al models and techniques (Bibri et al., 2023). These include
ML, DL with CNNs and RNNs, GA, ML-based Species Distribution Models (SDMs), and time series
forecasting, in addition to Autonomous Underwater Vehicles (AUVs), and Remotely Operated
Vehicles (ROVs), nano satellites, drones, and robots (Bakker, 2022; Seyma, 2023). For example,
ML techniques can be employed to analyse underwater photographs, enabling the identification
and categorization of marine species (Moniruzzaman et al., 2017). Also, Watanabe et al. (2019)
determined that an autonomous monitoring system utilizing optimally controlled robots is necessary.
They employed a DL algorithm known as YOLOV3 to detect underwater sea life and floating debris
on the ocean surface, achieving sensitivities of 69.5% and 77.2%, respectively.

Al techniques can be integrated into decision support systems (DSS) to enhance decision-making.
These rely on various data sources, analytical models, and user interfaces to help users make informed
decisions in the context of environmental sustainability and climate change. This includes assessing
ecosystem services, species conservation, water chemistry and quality, and hydro-meteorological
forecasting (Nishant et al., 2020). When DSS include ML, FL, and NLP, they can provide more
advanced and intelligent support. Automating and leveraging Al enhances the management of
maritime resources by developing Al-based decision support systems that effectively manage
fisheries and improve the establishment of MPAs (Seyma, 2023). Automation and Al have the
potential to transform marine research by introducing new perspectives and enhancing data
collection and processing.

Villon et al. (2018) developed and evaluated a CNN for identifying fish species in underwater images,
comparing its performance to human abilities in terms of speed and accuracy. Using a diverse
dataset of 900,000 images, the CNN was trained to recognize 20 different fish species, including
whole fish bodies, partial fish bodies, and environmental elements such as reef bottoms or water. The
CNN's accuracy was tested against human performance on a test set of 1197 images representing
nine species. The results showed that the CNN achieved a correct identification rate of 94.9%,
higher than the human accuracy rate of 89.3%. The CNN was particularly effective at identifying fish
partially obscured by corals or other fish, and in processing smaller or blurrier images, while humans
were better at identifying fish in unusual positions, such as twisted bodies. It is notable that efficient
monitoring of marine biodiversity is instrumental to understanding and mitigating the impacts of
climate change on marine ecosystems, as it helps track species distribution shifts, detect changes
in population dynamics, and assess the health of marine habitats affected by warming oceans,
acidification, and other climate-related changes.

lllegal fishing is closely related to climate change in several significant ways. Climate change can lead
to shifts in ocean temperatures, currents, and ecosystems, causing fish populations to move to new
areas, which can result in overfishing in some regions and underfishing in others, driving some fishers
to engage inillegal fishing practices to maintain their catch levels. Moreover, climate change impacts,
such as ocean acidification and changes in sea temperature, can stress fish populations and reduce
their numbers, leading fishers to resort to illegal methods to compensate for declining stocks. Since
the onset of the Industrial Revolution, the acidity of surface ocean waters has risen by approximately
30% (NASA, 2024). This increase is attributed to higher CO2 emissions from human activities,
which lead to its greater absorption by the ocean. Moreover, economic pressures play a role, as
communities reliant on fishing for their livelihoods may face increased economic strain due to the
effects of climate change on fish availability and distribution, prompting some to turn to illegal fishing
as a means of survival. Furthermore, climate change can damage critical marine habitats like coral
reefs and mangroves, which are essential for the life cycles of many fish species. The destruction
of these habitats forces fish to migrate, creating new challenges for legal and sustainable fishing
practices and potentially increasing illegal fishing activities.
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CASE STUDY

Al FOR REAL-TIME CORAL REEF MONITORING AND
CONSERVATION

Country: Fiji, the Maldives, Palau, Solomon Islands, and Vanuatu
Entities involved: Australian Institute of Marine Science

Brief description

ReefCloud's Al utilizes advanced algorithms trained on the Australian Institute of Marine
Science (AIMS)'s Long-term Monitoring Programme data to identify and classify coral
reefs from images automatically. This allows for rapid and accurate assessment of reef
health, standardizing collected data with 80-90% accuracy and analysing coral reef
composition at a speed 700 times faster than traditional manual methods. ReefCloud
employs a cloud-based platform that enables users to upload, access, and share data
from anywhere in the world. This facilitates collaboration among researchers and
managers and supports the processing of large image datasets. ReefCloud Analytics
processes millions of quality-controlled point annotations to identify trends and
patterns in coral reef health data and offer the possibility to visualize reefs in 3D. This
informs conservation and management decisions by providing detailed insights into
reef composition and condition over time.

Climate Change Mitigation and/or Adaptation Impacts and Results
Improved Monitoring: ReefCloud provides a rapid and accurate way to assess coral

reef health, helping to track changes over time and identify areas that need protection.

Enhanced Management: The system provides managers with the information needed
to make informed decisions about conservation and restoration efforts.

Resource Optimization: By analysing coral reef composition with 80-90% accuracy
and 700 times faster than traditional manual assessment, ReefCloud saves weeks to
months of labour, freeing up precious reef management resources.

Challenges and Lessons Learned Regarding Development and Implementation

For the successful deployment of Al monitoring systems in a global community, it is
important to ensure a user-friendly platform and standardized data collection.
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Appana et al. (2022) focused on combating IUU fishing by developing an edge technology-based
Al system for MPAs. The system utilizes low-cost, solar-powered edge computing devices on buoys
equipped with video cameras and processors to detect illegal fishing through Al-based image
recognition. The results showed that the system effectively detects and monitors vessels engaged
in illegal activities, reducing overfishing. The edge devices process data locally and a stealth drone
collects and reports the data, providing continuous 24/7 surveillance. This technology offers real-
time alerts of illegal fishing activities to governments and NGOs, supporting the protection of MPAs.

Cheng et al. (2023) investigated the use of Al in analysing fishing vessel behaviour to enhance
management practices, prevent illegal fishing, identify fishing grounds, and assess the impact of
harvesting on fishery resources. With the development of advanced vessel-tracking systems, a
wealth of real-time data on fishing vessels is now available, allowing for detailed analysis of their
behaviour. To effectively handle this large volume of data, Al algorithms are increasingly applied.
Various sources for studying fishing vessel behaviour are covered, along with Al methods used to
monitor and extract behavioural patterns, and research on the physical, ecological, and social factors
affecting these behaviours is synthesized.

Bakker (2022) examined aninnovative approach to digitally driven earth system governance in marine
biodiversity conservation: Artificial Intelligence-enabled, mobile marine protected areas (MMPASs).
This form of ocean governance operates in real-time and can potentially cover vast oceanic areas,
utilizing digital hardware that gathers data from various sources such as nano-satellites, drones,
environmental sensor networks, digital bioacoustics, marine tags, and deep-sea UAVs. The collected
data are then analysed using ML algorithms, CV, and ecological informatics techniques. Scientists
and regulators are increasingly advocating for the use of these Al-powered systems in global ocean
management due to their ability to provide adaptive, real-time responses to environmental changes
and disturbances. By enhancing the monitoring and protection of marine environments, MMPAs
can detect and respond to illegal activities and overfishing in real-time, ensuring more effective
enforcement of conservation regulations.

Samaei and Hassanabad (2024) focused on the intersection of marine industries, seas, and Al within
the framework of sustainable development. Key findings include the successful implementation of
Al for autonomous navigation, predictive maintenance, marine traffic management, environmental
monitoring, intelligent port operations, and smartaquaculture. Al technologies, such asreinforcement
learning, ML, neural networks, GA, and loT sensors, have significantly improved efficiency, accuracy,
and 24/7 operational capabilities.

4.4.2. Artificial Intelligence Interventions in Farming Management

Al is revolutionizing farming management by providing data-driven insights and adaptive strategies
that enhance agricultural productivity and sustainability, while enabling farmers to navigate changing
climate conditions more effectively.

Al and applied ML techniques are being leveraged to enhance agricultural practices. By integrating
advanced algorithms and real-time data analysis, Al tools empower farmers with critical information
to make informed decisions. This technological advancement is significant for addressing the
challenges posed by climate change and the increasing demand for food production.
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Nath et al. (2024) focused on the innovative potential of Al in the agricultural and food processing
industries, emphasizing its implications for sustainability and global food security. They
highlighted the increasing integration of Al technologies, such as ML, DL, and neural networks, in
these sectors to enhance various farming processes, including crop yield optimization, herbicide
use, weed identification, and fruit harvesting. The study concluded that Al boosts the efficiency,
sustainability, and productivity of agri-food systems and underscored the need to expand its
application across the agri-food supply chain, thereby contributing to global food security and
addressing key agricultural challenges.

Precision farming technologies use Al to analyse data from various sources, such as satellite imagery,
drones, and sensors to monitor crop health, soil conditions, pest infestations, optimal planting times,
air quality, and weather patterns. These data-driven approaches and actionable insights enable
precise resource management, leading to increased yields and reduced environmental impact. Al-
driven precision agriculture, combined with genome analysis and editing techniques, can produce
crops that are well-suited to the land and optimize plant production (Joseph et al., 2021).

Rustia et al. (2022) addressed the main bottleneck in Integrated Pest Management (IPM), which
is the lack of reliable and immediate crop damage data. To tackle this issue, they developed an
Intelligent and Integrated Pest and Disease Management (I2PDM) system. This AloT-based system
uses edge computing devices to automatically detect and recognize major greenhouse insect pests,
such as thrips and whiteflies, and to measure environmental conditions like temperature, humidity,
and lightintensity. The results showed that the system significantly supported farm managersin IPM-
related tasks, leading to a substantial yearly reduction in insect pest counts, with decreases as high
as 50.7%. The study concluded that the I2PDM system represents a significant advancement in IPM
through automated, long-term data collection and analysis. This innovative approach opens up new
possibilities for sustainable and data-driven IPM, encouraging collaboration among farm managers,
researchers, experts, and industries to implement more effective pest management practices.

Dheeraj et al. (2020) explored the role of Al and loT technologies in mitigating climate change by
creating environmentally friendly and high-performing systems. By integrating loT and Al, data
collected from field sensors are analysed to monitor various environmental factors such as soil
moisture, weather conditions, fertilization levels, soil composition, temperature, and irrigation
systems. The results indicate that this integration helps increase crop production, leading to higher
incomes for farmers.

Among the climate change challenges related to agriculture are altered growing seasons, increased
pest and disease pressures, and extreme weather events. Al systems can help farmers develop
adaptive strategies to navigate these challenges. Precision agriculture utilizes these systems to
identify pests, accurately and rapidly detect crop diseases, predict yields, and optimize fertilizer and
pesticide use using ML, DL, and CV (Chen etal., 2023). Herbicides or other chemical residues can be
left on plant products due to chemical spray transfer, often caused by wind blowing tiny droplets of
spray solution onto nearby crops or fields (Creech, 2015). Precision spraying technology addresses
this issue by drastically reducing the quantity of herbicide required and applying it only where weeds
are present. This targeted application can significantly lessen the environmental impact, lower costs,
reduce crop damage, and minimize excessive chemical residues (Balafoutis et al., 2017), thereby
adapting agricultural practices to changing environmental conditions.

Additionally, Swaminathan et al. (2023) reported that robots equipped with Aland CV for monitoring
and spraying weeds could reduce chemical usage on crops by 80% and cut herbicide costs by 90%.
In precision fertilization, a fertilizer application model calculates the required fertilizer input, which is
then applied using a variable rate applicator after assessing the soil’s nutrient levels and dividing the
field into a grid (Elbeltagi et al., 2022).
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ML models can predict the impacts of climate change on crop yields and recommend adaptive
measures, such as changing planting dates, selecting resilient crop varieties, and implementing
water-saving technologies. Du et al. (2021) developed a high-efficiency water and fertilizer control
system for cotton cultivation that uses soil conductivity thresholds to optimize the use of water and
fertilizer. This system, which monitors soil conductivity and moisture content, resulted in a 10.89%
reduction in resource usage. Moreover, accurately calculating reference evapotranspiration is
important for meeting crop water needs, providing essential data for effective water management
and sustainable agriculture.

Elahi et al. (2019) estimated the target values of agrochemicals for rice farms while maintaining
current yield levels in the Hafizabad and Sheikhupura districts of Pakistan. The authors found that
pesticide inputs could be reduced by 52.6% and pure nitrogen fertilizer inputs by 43.6%, leading to a
favourable and significant impact. Putra et al. (2020) modelled the storage and release of nutrients
through fertilizer application to simulate the availability and loss of nutrients in oil palm cultivation.
This approach helps determine and maintain the nutrient balance at specific sites by adjusting
fertilizer application accordingly.

4.4.3. Artificial Intelligence for Water Resource Management

Al applications in water resource optimization have garnered significant research attention in recent
years. These applications aim to enhance the conservation and efficient use of water resources. Al
systems play a role in optimizing water resource management. Al and ML algorithms analyse data
from sensors, satellite imagery, and weather forecasts to predict water demand and supply, optimize
irrigation schedules, and detect leaks in water distribution systems. These technologies help in
conserving water, improving water use efficiency, and ensuring the sustainable management of
water resources.

Among the major Al models used in water resource management are ANNs, SVM, decision trees
(especially random forests), multiple regression, autoregressive moving average models (ARMA),
and spline regression, with genetic algorithms (GA) also being widely utilized (Bibri, 2024; Bibri et al.,
2023; Nishant et al., 2020). Widely used ML models often combine ANN, including adaptive neuro-
fuzzy inference systems (ANFIS). For instance, ANNs and ANFIS can be used to predict streamflow
and analyse water quality parameters. In the study by Rashid and Kumari (2023), these two techniques
were utilized to predict velocity and pressure in the Gadhra (DMA-5) water distribution network in
Jharkhand, India. For predicting velocity, flow rate and diameter were used as independent variables,
while for predicting pressure, elevation and demand were the independent variables. The dataset was
split with 80% used for training, testing, and validation, and 20% for evaluation. Sensitivity analysis
was conducted with ANN-LM to explore the relationships between variables.

Sharma et al. (2024) focused on modelling the stage-discharge relationship, which is important for
accurate discharge estimation needed in reservoir operations, hydraulic structure design, and flood
and drought control. It compared a conventional stage-discharge rating curve (SRC) method with
three data-driven techniques: ANN, ANFIS, and SVM. The results showed that the ANFIS model
using the Gaussian membership function outperformed the SRC, ANN, and SVM models. Given the
importance of precise groundwater level estimation for crop cultivation, daily life, and sustainable
growth, Jithendra and Basha (2023) developed prediction models using hybrid techniques that
integrate ANN, ANFIS, and an Improved Reptile Search Algorithm (IRSA) to help prevent resource
depletion. IRSA was used to optimize the parameters of ANN and ANFIS, enhancing the forecasting
models’ effectiveness. Comparisons between ANN-IRSA, ANFIS-IRSA, traditional ANN, and ANFIS
on the same datasets showed that the ANFIS-IRSA model performed best.
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Adaptive intelligent dynamic water resource planning, a streamlined approach that utilizes Al
technology, enhances water efficiency, and sustains the water environment in urban areas (Xiang et
al., 2021). Liu et al. (2019) improved the stability and reliability of the projection tracking water quality
evaluation model by adding dynamic inertia weights to the moth flame algorithm, thereby enhancing
regional water environment evaluation accuracy. Afzaal et al. (2020) employed RNNs and LSTM to
address the dynamic inputs of climate change in Prince Edward Island, Canada.

CASE STUDY

Al ARTIFICIAL INTELLIGENCE FOR WATER MANAGEMENT
IN THE RED RIVER DELTA

Country: Viet Nam
Entities Involved: Brescia University (Italy) and Thuyloi University (Viet Nam),
supported by Climate Change Al

Brief description

This project focuses on the use of Al techniques for the water management of the
Red River Delta area in Viet Nam (Figure 4). In this area, the complex river network is
characterized by the presence of a system of dams designed to address sometimes
conflicting objectives: (i) generating hydropower to foster the local economy and
social activities, (ii) regulating the flood events occurring downstream during the rainy
season, (iii) supplying water for agriculture in the low flow season and (iv) contrasting
Sea Water Intrusion (SWI) in the estuaries of the rivers. Constraints include the need to
ensure the dam's safety by not exceeding a maximum or minimum water level.

Figure 4: The Red River Delta area in Viet Nam

With the aim of developing adaptive water management systems, this work studies
the feasibility of using Al techniques to identify policies for the current and projected
climatic conditions. In particular, our project focuses on optimizing water supply for
agriculture and energy production in the low-flow season while contrasting SWI in
the Red River Delta. We aim to use optimization methods like Genetic Algorithms
(GAs) and Al planning algorithms to automatically generate control policies for water
resource management of the Hoa Binh reservoir, the first hydroelectric reservoir on
the Da River while considering different constraints.
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Climate Change Mitigation and/or Adaptation Impacts

The project aims to enhance water management systems to address climate change,
urbanization, and population growth, focusing on both mitigation and adaptation.
Efficient water management will reduce water stress and ensure a reliable supply for
agriculture, industry, and domestic use, which is crucial as climate change exacerbates
scarcity. It will also mitigate sea-level rise effects and saline intrusion into freshwater
sources by controlling water releases and storage, maintaining balance in river deltas
and estuaries. Additionally, the project enhances renewable energy production by
optimizing water usage for hydropower, reducing reliance on fossil fuels, and lowering
carbon emissions. It supports local economies by ensuring a steady water supply for
various uses, fostering social development, and reducing vulnerability to climate-
induced economic disruptions.

Challenges and Lessons Learned Regarding Development and Implementation

The process of data analysis is challenging due to an absence of homogeneity in
the collected data, such as variations in recording time intervals and the presence of
missing data on certain days. Consequently, prior to utilization, a data screening and
correction procedure must be executed to rectify any inconsistencies or irregularities.
Moreover, the complexity of the irrigation system in the Red River Delta, consisting
of approximately 30 irrigation areas, requires precise determination of water
requirements. This necessitates a dedicated research effort to ensure accuracy and
reliability, which is beyond the scope of this research. In this context, the demand
indicatedin Decision 50, issued by the Vietnamese governmentin 2023 wasselected as
the reference framework. This strategic choice facilitates alignment with authoritative
mandates and provides a robust foundation for subsequent analyses. The available
models of the Red River Delta are data-driven approximations of its dynamics rather
than precise descriptions of the system’s physical evolution, increasing the reliance on
good-quality data.

The main challenges and risks that can be encountered while deploying the Al use cases presented
in Section 4.4 are:

- Datalntegration Challenges: Resource data (e.g., for agriculture or fisheries) may be
fragmented or outdated, impairing Al's effectiveness.

+ Inadequate Monitoring Infrastructure: Limited deployment of sensors or monitoring
equipment can hamper real-time resource tracking.

+  Socio-economic Inequities: If Al tools are only accessible to a privileged few (e.g., large-scale
commercial entities), smallholder farmers or local fishers may be sidelined.

+ Regulatory and Policy Gaps: Weak governance structures can lead to mismanagement or
uneven distribution of benefits (e.g., water allocation).
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4.5. Energy Management

Energy managementis a critical component in the fight against climate change, where optimizing the
generation, operation, distribution, transmission, and consumption of energy can lead to substantial
reductions in greenhouse gas (GHG) emissions. Enhancing energy efficiency, developing renewable
energy, and increasing its contribution to decarbonizing each of its end-users are crucial strategies
for tackling or mitigating climate change.

4.5.1. Real-time Energy Management

Al algorithms, such as neural networks and ML, are used to analyse vast amounts of data from smart
grids, allowing for real-time adjustments that enhance energy efficiency (Farghali et al., 2023).
Predictive analytics help in forecasting energy demand, reducing wastage, and balancing supply and
demand dynamically. As climate change challenges intensify, Al is increasingly recognized as one of
the key solutions to mitigate these challenges. Al can be seamlessly integrated with loT and renewable
energy systems, enhancing energy supply, optimizing decision-making, and enabling autonomous
control, thereby acting as a significant driving force in the energy sector (Bibri, 2024; Rane et al.,
2024a). Indeed, Al has the potential to innovate the energy sector, presenting new opportunities for
improving energy efficiency and achieving sustainable development objectives (Baysan et al., 2019;
Farghalietal., 2023).

Alsystems can be leveraged to enhance the distribution and transmission of energy by optimizing the
grid planning for reducing losses. Al techniques can be applied to develop smart grid systems that
adapt to changes in energy demand and supply in real-time, ensuring efficient energy distribution
and minimizing transmission losses. In the energy sector, the integration of Al can enhance energy
utilization efficiency by predicting energy demand, optimizing production and consumption, and
enabling intelligent control systems (Chen et al., 2023; Shoaei et al., 2024). These advancements
lead to reduced energy costs, decreased environmental pollution, and promote sustainable
development (Ahmad et al., 2021; Khalilpourazari et al., 2021; Lee and Yoo, 2021). For example, Al
applications in smart meters and home automation systems provide consumers with insights into
their energy usage patterns, helping them reduce consumption and lower energy bills. Al-driven
demand response systems can shift or reduce power usage during peak times, thus flattening the
demand curve and avoiding strain on the grid. Moreover, Al systems can provide early identification
of maintenance needs for grid elements and generating facilities, and propose optimized preventive
maintenance road maps, resulting in reduced equipment downtime and favouring reliability.

Furthermore, Ding et al. (2024) explored the potential of Al to enhance energy efficiency and
reduce carbon emissions in medium-sized office buildings in the United States. They developed
a methodology to assess emissions reductions by focusing on equipment, occupancy influence,
control and operation, and design and construction. By evaluating six scenarios across different
climate zones, the researchers found that Al systems could reduce energy consumption and
carbon emissions by 8% to 19% by 2050. Moreover, they can lower cost premiums, increasing the
adoption of high energy efficiency and net zero buildings. When combined with supportive energy
policies and low-carbon power generation, they could potentially achieve a 40% reduction in energy
consumption and a 90% reduction in carbon emissions compared to business-as-usual scenarios
by 2050. This study highlights Al's significant potential to transform energy efficiency and carbon
emission reductions in commercial buildings.
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Al integrated with IoT have been increasingly utilized to improve energy efficiency, optimize energy
management systems, and support Sustainable Development Goals (SDGs), especially SDG 7
and hence SDG 13. The examined studies in Table 2 - empirical studies, experimental studies,
case studies, and reviews - focus on these applications, detailing their themes, objectives, AloT
techniques applied, application areas, and key findings. Table 2 provides a comprehensive overview
and comparative analysis, offering insights into the diverse ways AloT are being leveraged to tackle

energy challenges and transform energy management practices.

Table 2: Artificial Intelligence applications in energy management

Research Objectives Al or AloT Application Key Findings References
Description Techniques Areas
Alin smart To review Al ML, DL, Big Smart power Al improves Guo et al.
power system | applications Data grids transient stability | (2023)
transient in addressing assessment and
stability transient control in smart
stability issues grids, enhancing
in smart power reliability and
grids. efficiency.
Al and digital To analyse Al, Big Data, Energy sector | Al systems Lyu and Liu
technologies the adoption loT, Robotics, enhance job (2021)
inthe energy | andimpact of Blockchain skills, firm
sector Al and digital performance,
technologies and energy
in the energy sector
sector. innovation.
loT and Al To develop loT, ML Energy Aland loT Tomazzoli et
for energy asystem management technologies al. (2020)
efficiency architecture systems improve
for centralized scalability,
energy automation,
efficiency using and efficiency
Aland IoT. in energy
management,
beneficial for
smart industry
and homes.
Alin smart To review Al ANN, ML, Big Smart Al systems Farzaneh et
buildings applicationsin Data buildings reduce energy al. (2021)
for energy smart buildings consumption,
management | for enhancing improve control,
energy reliability and
efficiency. automation in
smart buildings,
enhancing
efficiency.
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Table 2 (continued): Artificial Intelligence applications in energy management

Research Objectives Al or AloT Application Key Findings References
Description Techniques Areas
Al for thermal | To evaluate ML Building Al systems Ngarambe et
comfort Al methods energy optimize energy al. (2020)
prediction for optimizing management use while
and controlin | thermal comfort maintaining
buildings and energy use occupant
in buildings. thermal comfort,
improving energy
efficiency in
buildings.
Alin To assess Al Particle Swarm | Thermal Al systems Olabi et al.
prediction, techniques Optimization energy improve design (2023)
optimization, in optimizing PSO, ANN, storage and performance
and control thermal SVM, ANFIS of thermal
of thermal energy storage energy storage
energy systems. systems,
storage demonstrating
systems significant
accuracy.
Applicability To explore ML ML algorithms | Agriculture, ML enhances Arumugam et
of ML techniques’ energy predictive al. (2022)
techniques applicability accuracy and
in agriculture in smart efficiency in
and energy agriculture smart farming
sectors and energy and energy
production. production,
addressing key
challenges.
Al and ML Toreview Aland | Al, ML Emerging Al and ML Mhlanga
for energy ML applications energy techniques (2023)
consumption in optimizing markets optimize energy
and energy consumption,
production consumption production,
in emerging and production and grid
markets in emerging management,
markets. addressing issues
in developing
countries.
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CASE STUDY

OPTIMIZING HOUSEHOLD ENERGY CONSUMPTION: INDIA'S TATA
POWER EZ HOME

Country: India
Entities involved: Tata Power (Indian company)

Brief description

Electricity distributors face the complex challenge of balancing supply and demand
across millions of households, each with unique consumption patterns. As India
integrates more renewable energy sources into its grid, this balancing act becomes
even more intricate. The variability of solar and wind power generation, combined with
the diverse and often unpredictable nature of household energy consumption, creates
a significant challenge for energy management. This challenge is further complicated
by the factthathousehold energy consumptionislargely driven by individual behaviours
and routines. Factors such as weather conditions, work schedules, holidays, and
even major events can significantly influence electricity usage. Traditional methods
of forecasting and managing household energy consumption often fail to capture
these nuances, leading to inefficiencies and potential grid instability. Recognizing
these challenges, Tata Power, one of India’s largest integrated power companies,
has developed the EZ Home platform. This Al-powered solution leverages machine
learning and Internet of Things (loT) technologies to optimize household energy
consumption, control appliances, and enhance overall energy efficiency. By integrating
smart home automation features, EZ Home aims to provide a seamless and energy-
efficient living experience. EZ Home uses IoT technology to allow users to operate,
schedule, and monitor household appliances, including lighting, fans, air conditioners,
and more, via smartphone applications or voice commands. Al-powered Motion
Sensors: The system includes Al-powered Passive Infrared (PIR) Motion Sensors that
can control attached appliances based on human presence. .

Climate Change Mitigation and/or Adaptation Impacts and Results

Reduced Energy Waste: By optimizing energy consumption and distribution, EZ Home
reduces the need for overproduction and minimizes energy loss during transmission
and distribution.

Enhanced Energy Efficiency: The platform promotes energy-saving practices and
technologies, contributing to overall energy efficiency at the household level.

Lowered Carbon Footprint: By reducing energy waste and promoting efficient energy
use, EZ Home directly contributes to lowering greenhouse gas emissions at the
household level. Energy Management Analytics: EZ Home provides end-users with
data on their actual and predicted consumption at various levels (product, room, and
home), helping them manage their energy use more effectively.

Seamless Integration: The EZ Home devices are designed for easy installation and

offer backwards compatibility, allowing for integration into existing home setups
without extensive rewiring.
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4.5.2. Artificial Intelligence for the Efficient Use and Deployment of
Renewable Energy Technologies

Al models can be used to accurately predict the output of renewable energy sources (EI-Abbadi
and Elyoubi, 2023; Rane et al., 2024), such as solar and wind, thereby enhancing energy production
and handling transmission and distribution congestions. Accurate prediction helps in integrating
renewable energy into the grid more effectively, by reducing the needs of spinning reserves in the
power system and optimizing the connection to back-up generators just in time, ensuring a stable
supply and reducing reliance on fossil fuels. The integration of Al can optimize the performance
of renewable energy systems by adjusting parameters in real time. For example, reactive power
contribution from renewable generators can anticipate consumption patterns towards guarantee
appropriate voltage levels without further equipment or contribution of non-renewable generators.

In addition, the integration of AloT in the renewable energy sector is driving significant advancements
in how sustainable energy is generated, managed, and optimized, thus becoming increasingly crucial
for advancing sustainable energy solutions. Rane et al. (2024) explored the synergy between Al,
loT, and edge computing in renewable energy applications. IoT devices facilitate real-time data
collection, which, when combined with Al and ML, enhances system responsiveness and efficiency.
Data connections and loT sensors are integral to distributed energy resources (DERS), generating
extensive data that can enhance system efficiency and add value beyond simple monitoring thanks
to Al techniques (EI Himer et al., 2022). By integrating Al with |oT, new opportunities arise in the
energy sector for optimizing performance and creating additional benefits.

The examined studies in Table 3 — empirical studies, experimental studies, case studies, and reviews
- focus on Al applications in renewable energy, examining their themes, objectives, Al or AloT
techniques applied, application areas, and key findings. These studies cover various aspects, from
energy generation prediction and storage optimization to the integration of renewable sources into
power grids. Table 3 presents a detailed overview and comparative analysis to understand the impact
and potential of Al and AloT in enhancing the efficiency, optimization, and reliability of renewable
energy systems.
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Table 3: Artificial Intelligence and Artificial Intelligence
of Things applications in renewable energy

Research Objectives Al/AloT Application Key Findings Citations
Description Techniques Areas
(Theme)
Aland numerical | To review Al GA, PSO, Solar photo- Al-based Al-Othman
modelsin hybrid | applications simulated voltaic, wind modelling etal. (2022)
renewable in optimizing annealing, RF, energy, fuel identifies
energy systems HRESs KNN, SVM, cells conditions for
(HRESS) integrated ANN maximum power
with fuel cells. production,
predicting
drawbacks during
unexpected load
peaks.
Bio-inspired To review ANN, FL Photovoltaic Bio-inspired Guigiang et
algorithmsin bio-inspired Control, systems algorithms al. (2018)
maximum power | algorithms bio-inspired effectively
point tracking for maximum algorithms track the global
for PV systems power point maximum
tracking in power point,
PV systems outperforming
under partial traditional
shading. methods under
partial shading.
Al-based To develop Al- | ANN, SVM, Solar energy Al models, Alassery et al.
solar radiation based models | RF systems especially ANN, (2022)
prediction for accurate show superior
model for solar radiation performance
green energy prediction. in predicting
utilization solar radiation,
improving energy
management
and planning.
Al support for To evaluate Al, data- Variable Al systems Boza and
integrating Al's potential intensive renewable reduce Evgeniou
variable in managing technologies energy integration (2021)
renewable integration sources costs of VRESs,
energy sources costs of enhancing
variable system value and
renewable efficiency.
energy
sources.
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Table 3 (continued): Artificial Intelligence and Artificial Intelligence
of Things applications in renewable energy

Research Objectives Al/AloT Application Key Findings Citations
Description Techniques Areas
(Theme)
Large-scale To analyse Al Al techniques Multi-energy Al techniques Liuetal.
renewable techniques systems, optimize (2022)
integrations for large-scale renewable operational
for carbon renewable energy control and
neutrality energy effectiveness
integrations of large-scale
and carbon renewable
neutrality integrations,
transition. aiding in carbon
neutrality.
ML for high- To optimize ANN, GA Thermal ML techniques Jinetal.
temperature high- energy optimize (2022)
reservoir temperature storage HT-RTES site
thermal energy reservoir selection and
storage thermal performance,
energy aiding in
storage using renewable
ML. energy storage.
AloT for To explore AloT Solar, wind AloT improves El Himer et al.
renewable AloT energy efficiency and (2022)
energy systems | applications systems performance
in enhancing of renewable
renewable energy systems
energy through
systems. enhanced data
utilization.
Al for predictive | To assess Al techniques | Wind farms Al assistance Shin et al.
maintenance Al-assisted improves (2021)
of renewable predictive maintenance
energy systems maintenance efficiency and
in renewable fault detection in
energy wind farms.
systems.
Hybrid Al and To develop ANN, Household, Al models Puri et al.
loT model for an loT-based Adaptive industrial enhance (2019)
renewable system for Neuro-Fuzzy energy renewable
energy renewable Inference systems energy
generation energy System generation
generation (ANFIS) efficiency,
using Al with ANN
models. outperforming
ANFIS.
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Table 3 (continued): Artificial Intelligence and Artificial Intelligence
of Things applications in renewable energy

Research Objectives Al/AloT Application Key Findings Citations
Description Techniques Areas
(Theme)
Comparison of To compare Group Solar energy GMDH model Khosravi et al.
Al methods for various Al Method of systems outperforms (2018)
solar radiation methods for Data Handling othersin
estimation estimating (GMDH), predicting
daily global Multilayer global horizontal
solar radiation. | Feed-Forward irradiance.
Neural
Network
(MLFFENN),
ANFIS,
ANFIS-PSO,
ANFIS-GA,
ANFIS-ACO
Al for optimizing | To explore Al PSO, ANN, Thermal Al techniques Olabi et al.
thermal energy applications SVM, ANFIS energy optimize, predict, | (2023)
storage systems | in optimizing storage and control the
thermal systems performance
energy of thermal
storage energy storage,
systems. enhancing
efficiency and
reliability.
Alin renewable To review Al ANN, LSTM, Renewable Aland ML Shoaei et al.
energy systems applications RNNs, CNNs, energy techniques (2024)
in renewable GA, PSO systems significantly
energy improve
systems. modelling and
optimization
of renewable
energy systems.
Al for energy To optimize Group Hybrid The proposed Banu et al.
storage in hybrid | energy Method of renewable Al technique (2022)
renewable storage Data Handling | energy optimizes ESS
energy sources systems (GMDH), sources for hybrid
in hybrid Multilayer renewable
renewable Feed-Forward energy,
energy Neural outperforming
sources. Network recent methods.
(MLFFNN),
ANFIS,
ANFIS-PSO,
ANFIS-GA,
ANFIS-ACO
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Table 3 (continued): Artificial Intelligence and Artificial Intelligence
of Things applications in renewable energy

Research Objectives Al/AloT Application Key Findings Citations
Description Techniques Areas
(Theme)
Adaptive To propose a Mode Solar and The proposed Zamee and
artificial neural novel adaptive | Adaptive wind energy algorithm Won (2020)
network for neural Artificial systems significantly
renewable network for Neural reduces
energy renewable Network prediction errors
generation energy (MAANN), compared to
prediction prediction. Advanced conventional
Particle methods.
Swarm
Optimization
(APSO), Jaya
Algorithm,
Fine-Tuning
Metaheuristic
Algorithm
(FTMA)
Alin off- To find Bonobo Off-grid BO technique Farhetal.
grid hybrid optimal design | Optimizer hybrid achieved optimal | (2022)
renewable for off- (BO), Big renewable solutions with the
energy system grid hybrid Bang-Big energy lowest annualized
optimization renewable Crunch systems system cost
energy (BBBC), and quick
systems. Crow Search convergence.
(CS), Genetic
Algorithm
(GA),
Butterfly
Optimization
Algorithm
(BOA)
Al for managing | To minimize DL, Gated Wind and Al methods Shams et al.
renewable renewable Recurrent Unit | solar energy significantly (2021)
power power (GRU) systems reduce
curtailments curtailments curtailments,
using Al with AWEs
outperforming
BESSs in cost
and operational
efficiency.
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Table 3 (continued): Artificial Intelligence and Artificial Intelligence
of Things applications in renewable energy

Research Objectives Al/AloT Application Key Findings Citations
Description Techniques Areas
(Theme)
Optimal sizing To propose GA, ABC PV/battery Heuristic Demolli et al.
of hybrid optimal sizing and PV/wind algorithms (2021)
renewable of hybrid turbine/ outperform
energy systems renewable battery deterministic
energy systems algorithmsin
systems using finding optimal
Al. solutions for
HRESs.
Al forimproving | To enhance ANN Solar water ANN optimizes Asiri et al.
performance performance heaters performance (2022)
of renewable of solar water of PV-powered
energy heaters using solar water
conversion and Al heaters,
storage improving
efficiency and
reliability.
Comprehensive Examine Al, ML, loT, Renewable Aland ML Rane et al.
analysis and Aland ML Blockchain energy techniques (2024)
synthesis of applications and Edge forecasting, enhance
Aland ML across Computing smart grids, efficiency,
applications renewable energy reliability, and
in renewable energy for management, | sustainability
energy efficiency, energy in renewable
reliability, and storage energy systems
sustainability. systems through precise
forecasting,

optimized energy
production and
distribution,

and predictive
maintenance.
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While the application of Al in domains, such as thermal comfort prediction and control, fault
detection and diagnosis, energy storage optimization, and demand response, has shown promising
results in enhancing energy efficiency, reducing waste, and promoting sustainable development (
Fang et al., 2023; Rane et al. 2024), its effectiveness is an ongoing process that heavily relies on
the accuracy of input data and the appropriate selection of Al algorithms (Arumugam et al., 2022;
Ouadah et al., 2022). Moreover, the lack of accessible data and skilled Al experts poses a significant
barrier to its widespread application in energy efficiency . Nevertheless, the integration of Al and
AloT in energy systems has demonstrated substantial potential in enhancing energy conservation,
optimizing renewable power deployment and generation, and supporting sustainable development
goals, making renewable energy technologies more broadly suitable and reliable, towards a complete
energy transition.

The main challenges and risks that can be encountered while deploying Al systems for the use cases
presented in Section 4.5 are:

+High Initial Costs: Procuring and maintaining Al-driven energy optimization systems can be too
expensive for smaller utilities and governments.

- Grid Instability: Frequent power outages or inconsistent energy supply disrupt Al systems that
rely on continuous data streams.

+ Limited Technical Skills: Shortage of trained engineers and data scientists undermines the
long-term sustainability of Al solutions.

+ Risk of Lock-In: Dependence on proprietary software or external vendors can constrain local
autonomy and innovation.

4.6. Transport Management

As the global population continues to urbanize and industrial activities expand, the efficiency of
transportation systems becomes increasingly critical. Al has emerged as an innovative or a beneficial
technology in transport management, offering solutions to optimize operations, enhance safety, and
reduce environmental impacts.

4.6.1. Artificial Intelligence Interventions in Transport Management

Al-driventechnologies canenhance the development of smarter and more sustainable transportation
networks, which is crucial for mitigating greenhouse gas emissions. The transportation sector
accounts for nearly one-third of global emissions (Solaymani, 2022), making it essential to reduce
these emissions as part of climate change initiatives. Al optimizes routes considering traffic patterns
and weather, improving fuel efficiency, and decreasing travel times . By enhancing transportation
systems, Al offers promising solutions for reducing the carbon footprint (Fatemidokht et al., 2021).

Al-powered traffic management systems use real-time data from sensors and GPS to monitor
traffic flow and dynamically adjust signals, reducing idling and unnecessary detours. These systems
can greatly enhance efficiency and result in significant cost savings and reduced emissions (Chen
et al.,, 2023). Moreover, the integration of Al with sustainable transportation methods, like bicycle-
sharing schemes, has been shown to improve urban mobility through better data management using
technologies like loT (Puri et al., 2020). Al also enhances public transit by optimizing scheduling
and encouraging lower-emission transportation modes (Nikitas et al., 2020; Olayode et al., 2020).
This involves analysing data to predict demand and adjust routes, accordingly, promoting more
sustainable options (Chen et al., 2023).
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The rise of autonomous vehicles (AVs) represents a significant transformation in transportation.
AVs can reduce accidents and emissions by improving fuel efficiency and traffic patterns (Tyagi
and Aswathy 2021). Furthermore, the concept of Shared Autonomous Electric Vehicles (SAEVs)
offers benefits by alleviating congestion and reducing greenhouse gas emissions (Ahmed et al.,
2023). Studies show that adopting SAEVs could lower emissions and costs, providing substantial
environmental and economic advantages compared to privately owned vehicles (Jones and
Leibowicz, 2019).

4.6.2. Artificial Intelligence for Industry Production

Al can enhance the efficiency of logistics and supply chain operations, reducing costs and emissions.
They can also improve load management, predict maintenance needs, and optimize routes by
utilizing data-driveninsights, leading to more efficient and reliable freight transportation systems. The
integration of Al in these sectors enhances operational efficiency and contributes to environmental
sustainability and climate change mitigation by minimizing the adverse effects of industrial activities
and freight transport.

Al has the potential to transform supply chain management by enhancing decision-making processes
and automating various tasks to reduce supply bottlenecks. Al systems can monitor and identify issues
with specific food products, and aiding supply chain management during large-scale food supply
can forecast demand more accurately, helping to adjust storage needs and prevent overstocking or
shortages. This ensures that perishable goods are sold while still fresh, reducing waste (Lutoslawski
etal.,, 2021). Al systems also enhance livestock supply chains by aiding in production planning, quality
control, and predicting maintenance needs before they arise (Helo and Hao, 2022). Within storage
facilities, Al combined with IoT sensors can continuously monitor and adjust conditions, such as
temperature and humidity, optimizing the life cycle of perishable goods while minimizing waste and
energy consumption (Wang et al., 2022). Furthermore, Al is used to optimize food distribution routes
and vehicle loads, which helps reduce carbon emissions from the food supply chain (Yaiprasert and
Hidayanto, 2023).

Moreover, Cohen et al. (2023) noted that pre-component production necessitates significant data
analysis. They emphasized that if component data problems arise during modelling, it can lead to
waste and reduce the enterprise’s productivity, ultimately causing resource waste. Cioffi et al. (2020)
focused on intelligent manufacturing, emphasizing a fully integrated and collaborative production
system. This system is designed to respond in real time to evolving conditions within the factory,
supply network, and according to customer needs. Dwivedi et al. (2021) indicated that Al systems
enhance efficiency by integrating management methods, such as combining Al with lean production.
This approach allows each production link to calculate its efficiency, thereby reducing waste of raw
materials due to idleness and helping enterprises optimize their production lines. The primary role
of Alin this context is as a tool for data analysis, enabling the interpretation and evaluation of results
to improve energy and resource management. The extensive use of fossil fuels in manufacturing
processes is a major contributor to significant CO2 emissions (Yue and Gao, 2018).

Various studies have explored different facets of Al applications, highlighting their practical
implications and the significant challenges they present. Liu et al. (2024) provided a comprehensive
analysis and synthesis of Al applications in the modular construction industry. Their systematic
exploration underscores the advancementsin Al technologies, such as ANNs and ML, which enhance
production efficiency, optimize logistics, and improve operational management. Yang et al. (2021)
proposed a new model for intelligent manufacturing in the process industry. This model emphasizes
the deep integration of industrial Al and the Industrial Internet, leveraging Al for optimal decision-
making, autonomous control systems, and improved operational management. The study highlights
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Al's effective role in traditional process industries through enhanced decision-making and control
systems. Plathottam et al. (2023) offered a detailed analysis of Al/ML technologies, identifying
key areas where Al can improve efficiency, such as predictive maintenance, quality assurance,
and process optimization. However, the authors highlight significant challenges, including data
acquisition, security risks, and trust issues, which must be addressed to fully leverage Al's potential
in manufacturing.

Furthermore, recent studies highlight the significant potential of Al in enhancing global economic
dynamics and firm performance. Liu et al. (2024) focused on the broader impact of Al on the
Global Value Chain (GVC) position of the manufacturing industry. Using extensive panel data
from 61 countries, their findings reveal that Al improves the GVC position by enhancing production
efficiency, boosting technological innovation, and reducing trade costs. The study is particularly
insightful for policymakers, emphasizing Al's more pronounced impact in developing countries and
various manufacturing sectors, thereby promoting global competitiveness.

The main challenges and risks that can be encountered while deploying the Al use cases presented
in Section 4.6 are:

+ Inadequate Infrastructure: Poor road networks and limited public transport options reduce
the potential impact of Al optimization.

« Connectivity Constraints: Unstable communications infrastructure can disrupt real-time
tracking and data-sharing.

+ Uneven Benefits: Improvements in transport logistics may serve only well-connected urban
areas, leaving out rural regions.

«  Privacy and Security Concerns: Collecting mobility data without strong data protection
regulations can expose citizens to misuse.

4.7. Disaster Risk Reduction

Disaster risk reduction involves strategies to minimize the damage caused by natural and
human-made disasters. Al systems play an important role in enhancing both preparedness and
recovery efforts.

The International Organization of Migration (IOM) reports that climate has now become the leading
driver of internal displacements (more than conflict). Migration induced by environmental factors
such as climate change or natural disasters is on the rise, and only expected to increase. IOM is a
leading organization on climate mobility, working at community and national levels to support
prevention, preparedness, response, and recovery. Early action and disaster risk reduction are key
pillars in IOM interventions to support millions of women, men, and children, especially in a world
of growing climate-related humanitarian emergencies. In 2020, 30.7 million people were internally
displaced by disasters; a number three times greater than those displaced by conflict and violence
(9.8 million people). Of those displaced by disasters, 98% faced weather and climate hazards.
Climate and weather-related disasters have affected a further 1.7 billion people globally during
the past decade. These numbers are expected to rise as the frequency, duration, and intensity
of natural hazards worsen. However, Microsoft is partnering with the IOM so they can use Al and
analytics capabilities to better understand the impact of climate-induced migration and improve
their humanitarian efforts.
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4.7.1. Predictive Analytics Shaping Evacuation Planning

Al models aid in shaping evacuation planning through predictive analytics. Al systems can predict
the potential impact of disasters, related to floods, hurricanes, earthquakes, and heatwaves, by
analysing historical data and real-time inputs. Indeed, advancements in Al for processing climate
big data enable the identification of more comprehensive future climate change scenarios and the
development of intelligent early warning systems (Leal Filho et al., 2022). Climate change predictions
enable authorities to identify high-risk areas and develop effective evacuation routes and strategies.
For instance, Al models can simulate various disaster scenarios and assess their potential outcomes,
providing valuable insights into the best evacuation practices. Al can also be used to determine the
ideal placement of traffic sensors to avoid bottlenecks during such evacuations (Gazzea, 2023). This
predictive capability ensures that evacuation plans are timely and tailored to the specific dynamics of
an impending disaster, thereby enhancing the safety and efficiency of evacuations.

In the context of extreme weather disasters, Al applications enhance public engagement in climate
issues and stimulate collective action by accurately predicting and visualizing climate change risks
(Alemany et al., 2019; Walsh et al., 2020). These Al-driven insights aid decision-support efforts
through real-time monitoring, thereby improving situational awareness and enabling timely
interventions (Anbarasan et al.,, 2020; Booth, 2018; Samadi, 2022; Walsh et al., 2020). Al can
contribute to climate change mitigation by enhancing the prediction of extreme weather events
(McGovern et al., 2017; Shultz et al., 2021). Huntingford et al. (2019) highlighted the potential of
ML in climate change preparedness in terms of its ability to provide enhanced warnings of extreme
weather events. Al models are adept at identifying complex patterns and correlations, allowing them
to forecast the likelihood and potential severity of extreme weather events with greater accuracy.
This predictive capability improves intelligent early warning systems, providing timely alerts and
enabling proactive measures to reduce the impact of these events (Leal Filho et al, 2022; Rolnick et
al., 2022).

Anbarasan et al. (2020) proposed a flood detection system integrating loT, big data, and
Convolutional Deep Neural Networks (CDNN) to enhance flood prediction accuracy. Their system
pre-processes data to eliminate redundancies and applies CDNN for classification, outperforming
ANN and DNN. Samadi (2022) introduced the Flood Analytics Information System (FAIS), which
combines Al, big data, and loT to provide real-time flood monitoring and situational awareness.
FAIS successfully integrates crowd intelligence, ML, and NLP to improve flood risk assessments and
response strategies. Khalilpourazari and Pasandideh (2021) presented a robust optimization model
for flood evacuation planning, leveraging Al to optimize shelter locations and helicopter routes,
significantly improving rescue rates and cost efficiency.

During disasters, the coordination of response efforts is critical to minimizing harm and ensuring
a swift recovery. Al systems facilitate this coordination by integrating data from multiple sources,
including satellite imagery, sensor networks, and social media feeds. Al models can significantly aid
disaster relief efforts by mapping floods, locating refugee camps using satellite data (Logar et al.,
2020), as well as identifying the populations most in need of assistance. This integration provides
real-time situational awareness (Abid et al., 2021; Samadi, 2022), allowing responders to understand
the scope and scale of the disaster as it unfolds. Furthermore, Al systems optimize resource
allocation by analysing the availability and location of emergency resources such as medical supplies,
personnel, and equipment. This real-time optimization ensures that resources are deployed where
they are most needed, enhancing the overall effectiveness of the disaster response.
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Lee and Chien (2020) explored Al and IoT in robotic disaster response, highlighting the potential of
AloT in coordinating robotic swarms for search and rescue operations, thus improving the efficiency
and effectiveness of disaster response. Swarna and Bhaumik (2022) explored the integration of Al
and loT devices to enhance the prevention, response, and recovery phases of disaster management.
The study focuses on developing a platform that combines multiple Al components, IoT devices, and
data sources into a unified system to improve disaster management practices. The study resulted in
the creation of an integrative Al platform designed to oversee real-time data collection and analysis
through loT devices. Two use cases in disaster prevention were highlighted, demonstrating the
platform’s capability to implement predictive monitoring and efficient response strategies.

Raza et al. (2020) focus on enhancing communication infrastructure in disaster-affected areas using
Al and social media platforms to form resilient communication networks. The researchers propose
a user-centric approach to create communication networks in areas where the infrastructure has
been compromised due to natural disasters related to floods, earthquakes, and storm surges. The
proposed solution involves forming ad hoc clusters to enable emergency communications, utilizing
a novel cluster formation framework that supports both single and multi-hop communication. Their
innovative approach maximizes communication throughout and accurately classifies disaster impact
areas, thereby facilitating better coordination and response. The ML techniques used to classify
disaster-prone areas showed promising results, suggesting that this approach could effectively
restore communications and provide situational awareness during disasters.

Saleem and Mehrotra (2022) examined the emergent use of Al and social media for disaster
management. The primary aim is to highlight how Al systems can process disaster-related content
from social media to aid disaster response organizations in making effective decisions. The research
underscores the importance of timely and relevant information, which social media provides during
disasters, offering real-time insights from affected communities. It also presents case studies
demonstrating new approaches for disseminating and acquiring time-sensitive information during
disasters. The findings underscore the potential of Al-based systems to exploit social media data for
improving the efficiency and effectiveness of disaster management strategies.

4.7.2. Post-Disaster Risk Assessment: A Multi-faced Approach

Al-driven risk assessment tools help identify vulnerable areas and populations, enabling targeted
interventions before disasters strike (Kuglitsch et al.,, 2022b). Authorities can enhance their
preparedness strategies by harnessing the power of Al, ensuring more effective and timely
interventions during disasters. Ghaffarian et al. (2023) examined the role of Explainable Al (XAl) in
enhancing Disaster Risk Management (DRM) by improving decision-making processes. The authors
identified various types of hazards and disasters, risk components, and Al and XAl methods. The
findingsindicate a significantincrease in the use of XAl techniques for DRM, underscoring the growing
importance of transparency and interpretability in Al applications. The study highlights the need for
multi-hazard risk analysis, the integration of XAl in early warning systems, and the incorporation of
causal inference methods to enhance DRM strategy planning and effectiveness.

Sun et al. (2020) emphasize the increasing damage and socio-economic losses caused by natural
hazards. The study reviews Al applications across the four phases of disaster management. In the
mitigation and preparedness phases, Al techniques assist in risk assessment, early warning systems,
and community education to enhance disaster readiness. The response phase sees the highest
concentration of Alapplications, leveraging real-time data processing, optimizing resource allocation,
and improving situational awareness. In the recovery phase, Al systems aid in damage assessment
and efficient resource allocation for rebuilding efforts. Additionally, the study identifies challenges
such as data quality, system integration, and ethical considerations, aiming to inspire further research
and advancements in Al to address these issues effectively.

60



Exploring the potential of Al in disaster risk management, Velev and Zlateva (2023) emphasize the
numerous challenges in applying Al to this field. These challenges include the necessity for high-
quality and diverse data, ensuring compatibility with existing systems and technologies, addressing
ethical and social implications, and the need for continuous research and development. Additionally,
they underscore the critical importance of data privacy and security, given that Al applications in
disaster management often involve handling sensitive information. The study aims to analyse these
challenges to ensure that Al systems are developed and utilized in ways that are fair, equitable, and
effective in mitigating the impacts of disasters. Similar topics are addressed in the technical reports
of the ITU/WMO/UNEP Focus Group on Al for Natural Disaster Management (ITU, 2024a).

Salluri et al. (2020) utilized CNN for object detection in disaster scenarios, focusing on floods and
earthquakes. Their study demonstrated high accuracy with pre-trained models like VGG-19, aiding in
efficient disaster recovery operations. Equipped with Al algorithms, these technologies can analyse
vast amounts of visual data to identify and quantify damage to infrastructure, homes, and natural
landscapes. Zhang et al. (2023) proposed a hybrid learning approach combining Aland crowdsourced
data to improve the generality of disaster damage assessment models, demonstrating substantial
improvements over traditional methods. Sun et al. (2020) highlighted the importance of Alin disaster
response and recovery, showcasing its ability to enhance the assessment of damage and socio-
economic losses resulting from natural hazards and prioritization of recovery efforts. The authors
concluded that, in the recovery phase, Al is key to swiftly assessing damage and efficiently allocating
resources for rebuilding efforts. Abid et al. (2021) highlighted Al's important role in enhancing
recovery operations by facilitating rapid data analysis and visualization, enabling governments to
make quicker and more informed decisions in the aftermath of a disaster. By analysing large volumes
of data from various sources, ML models can quickly identify the most affected areas and prioritize
them for immediate action. This enhances the overall efficiency and effectiveness of recovery
operations and streamlines the reconstruction process. Khajwal et al. (2022) focused on the reliability
of automated post-disaster building damage classification using Al and multi-view imagery. Current
Al applications in post-disaster damage assessment often lack detailed classification of damage
levels and are based on limited aerial or satellite imagery. To address these limitations, the authors
propose using comprehensive visual data from multiple ground and aerial views of buildings. A Multi-
view Convolutional Neural Network (MV-CNN) architecture is employed to combine information
from different views, providing a spatially aware damage prediction model. The model is trained
and validated on a dataset of geotagged, expert-labelled images of buildings affected by Hurricane
Harvey. The findings demonstrate that the proposed model achieves reasonably good accuracy in
predicting damage levels, offering a more reliable tool for Al-assisted disaster management.

Arachie et al. (2020) focused on identifying critical sub-events after large-scale disasters using
unsupervised learning on social media data. Their method effectively filtered and ranked relevant
information, enhancingemergency responders’ability to manage crises. The findingsdemonstrate
that their unsupervised learning framework effectively identifies and ranks important sub-events,
thereby aiding emergency responders in making informed decisions for resource allocation and
response planning. This post-disaster analysis is validated through quantitative experiments
on data from Hurricane Harvey and the 2015 Nepal Earthquake, showing its effectiveness over
baseline methods.

The initiative led through national and international cooperation and partnership highlights the
use of DL techniques and aerial imagery to improve climate resilience in the Caribbean housing
sector (Tingzon et al., 2023; World Bank, 2023). This approach leverages advanced Al methods to
generate critical housing stock data rapidly, aiding disaster risk management and supporting climate
adaptation efforts in SIDS.
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CASE STUDY

MAPPING HOUSING STOCK CHARACTERISTICS FROM AERIAL
AND STREET VIEW IMAGES USING DL FOR CLIMATE RESILIENCE
IN THE CARIBBEAN

Country: Dominica, Saint Lucia, Grenada

Entities Involved:The World Bank, Global Facility for Disaster Reduction and
Recovery (GFDRR), Government of the Commonwealth of Dominica (GoCD), and
Government of Saint Lucia (GoSL)

Brief description

The Caribbean region isamong the most vulnerable globally to climate risks due to the
increasing frequency and severity of natural hazards like tropical cyclones, landslides,
and floods. Small Island Developing States (SIDS) often sustain the highest levels
of damage, particularly in the housing sector. Accurate and up-to-date information
on the spatial distribution and characteristics of buildings is crucial for effective
vulnerability assessment and disaster risk management. However, traditional house-
to-house surveys are expensive and time-consuming, creating significant obstacles.

To address this, a project was initiated to develop a workflow that rapidly generates
critical baseline housing stock data using high-resolution drone images and DL
techniques. Leveraging CV, particularly the Segment Anything Model and CNNs,
this project automates the generation of exposure data maps. The goal is to enable
government agencies to identify damaged buildings following a disaster swiftly and
cost-effectively and proactively detect at-risk structures before a disaster occurs.
This initiative, under the Digital Earth for Resilient Housing and Infrastructure in the
Caribbean, seeks to improve the climate resilience of the housing sector in SIDS in the
Caribbean. Future expansions of this methodology are planned for countries in Asia
and the Pacific.

Climate Change Mitigation and/or Adaptation Impacts and Results

The project has produced building footprint and roof type classification maps for
Dominica (see example in Figure 5), Saint Lucia, and Grenada, which are essential for
climate risk and vulnerability assessments. Additionally, building characteristics such
as material type, completeness, and condition have been extracted from street-view
photos to further support these assessments.

Figure 5: An Al-generated map of building footprints in Salisbury, Dominica.
Drone image is taken from OpenAerialMap
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Figure 6 illustrates the sequence of roof material classification and changes in a
Caribbean housing sector pre- and post-disaster in Colihaut, Dominica. The four
images provide a comparative visual analysis that highlights the impact of disasters
on roof materials and the effectiveness of the classification approach in both pre-and
post-disaster contexts.
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Figure 6: Pre- and post-disaster roof material classification maps
in Colihaut, Dominica

Challenges and Lessons Learned Regarding Development and Implementation

One of the initial challenges was identifying the exposure data gaps in the target
regions and defining the relevant building characteristics that could feasibly be
extracted from drone and street-view images. This project underscored the critical
importance of extensive stakeholder engagement for the successful adoption of
Al technologies.

This work also highlighted the necessity of building local capacity within government
agencies and the importance of democratizing capacity through open-source tools
and datasets. Bridging the gap between data, action, and impact requires robust
collaboration among technical experts, social scientists, government stakeholders,
and local communities..

The main challenges and risks that can be encountered while deploying Al systems for the use cases
presented in Section 4.7 are:

- Incomplete Hazard Data: Limited historical records of disasters (e.g., cyclones, storm surges)
weaken Al-based risk assessments.

+  Failure of Critical Systems: When disasters strike, power and connectivity may go down,
rendering Al-driven warning systems inoperable.

+ Unequal Access to Warnings: Without widespread mobile or internet coverage, communities
in remote areas may miss alerts.

«  Over-reliance on Tech: Al systems might overshadow local knowledge or traditional coping
mechanisms, potentially eroding community resilience.
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4.8. Emerging Large Language Model Applications

LLMs represent a promising new frontier in climate action, offering game-changing potential,
especially in developing countries where resources and expertise are often limited. Despite the
considerable excitement surrounding these technologies, it is important to acknowledge that many
LLM applications are still in the early stages of development, and research in this area remains in
its infancy. However, the accessibility and affordability of LLMs will provide a unique opportunity
for these regions to leverage cutting-edge technology and innovative solutions that can enhance
climate resilience and sustainability.

The introduction of ClimateGPT, a model family of domain-specific LLMs, marks a significant leap
in applying Al to climate science (Thulke et al.,, 2024). ClimateGPT synthesizes interdisciplinary
research on climate change, designed to provide in-depth, accurate, and accessible insights across
various aspects of climate science. The family includes multiple model sizes, such as ClimateGPT-7B,
13B, and 70B, each tailored to address different facets of climate-related information needs. In the
spirit of transparency and collaboration, all versions of ClimateGPT are made publicly available. This
openness facilitates widespread access and use, encouraging further research, development, and
innovation in Al-driven climate solutions.

For developing countries, particularly SIDS and LDCs, LLMs can serve as powerful tools to
overcome barriers related to resource constraints and technical expertise. By tapping into the
capabilities of LLMs, these regions can gain access to advanced predictive modelling, data
analysis, and decision-making tools that were previously out of reach. The potentialimpact of LLM
applications in these areas is significant, as they can drive meaningful improvements in various
sectors critical to climate action.
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CASE STUDY
Al ENABLER FOR CLIMATE SOLUTIONS

Country: China
Entities involved: Climind

Brief description

Climind is an Al platform designed to tackle the complexities of climate change by
leveraging the power of LLMs and Retrieval-augmented Generation (RAG). It offers
an array of features that enhance decision-making and efficiency in climate action
through advanced NLP capabilities. Key functionalities include Climind Ask, which
provides expert search capabilities, Climind Read with indexed search, and Al-driven
analysis of regulatory documents. By integrating comprehensive corporate climate
data with mitigation measures, Climind enables precise report generation, carbon
pricing insights, climate risk assessments, and carbon trading information.

Climate Change Mitigation and/or Adaptation Impacts and Results

Climind, an Al-powered climate co-pilot, has significantly impacted climate change
mitigation and adaptation efforts. By providing access to a comprehensive actionable
climate data infrastructure, Climind enables precise climate policy/news search,
comprehensive climate risk assessments, and more. Climind’s Al-driven insights
support sustainable finance initiatives, guiding companies in reducing their carbon
footprints and improving energy efficiency. Additionally, Climind aids policymakers in
developing effective climate strategies, contributing to the global transition towards
a low-carbon economy.

Challenges and Lessons Learned Regarding Development and Implementation

The development and implementation of Climind faced several challenges. One
major issue was the lack of authentic and real-time climate data, as the general Al
models are primarily trained on internet data. Structuring this data to be useful for
climate applications proved to be time-consuming and costly. Additionally, the slow
adoption of Al within the climate sector posed a significant hurdle. Despite these
challenges, it became evident that accelerating the industry’s adoption of Al is crucial.
Climind’s potential application in time-consuming tasks, such as ESG reporting and
the development of IPCC literature review, highlighted the need for efficiency and
speed in climate science. This experience underscored the importance of continuous
innovation and the integration of advanced technologies to enhance climate action.
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LLMs are indeed becoming increasingly accessible due to the availability of pre-trained models (e.g.,
GPT, BERT) through APIs and platforms, which smaller organizations and start-ups in developing
countries can leverage without needing to train them from scratch. This increased accessibility
and affordability offer new opportunities for these organizations to implement and scale Al-driven
solutions that address climate challenges more effectively.

The emerging applications of LLMs (Table 4) hold promise for LDCs and SIDS, focusing on use
cases that are highly relevant to these regions and could significantly enhance their climate resilience
and sustainability efforts.

Table 4: Emerging applications of Large Language Models in enhancing climate resilience
and sustainability for LDCs and SIDS

Application Area  Use Case

Knowledge + Multilingual climate information chatbots providing localized climate data and
Access and adaptation strategies
Capacity-

building » Al-powered educational platforms offering personalized climate change curricula

« Interactive policy guides helping local officials understand and implement climate
regulations

+ Virtual assistants supporting climate scientists and researchers in data analysis and
literature review

- Language translation services facilitating access to global climate research for non-
English speakers

Climate-resilient + Conversational Al systems providing farmers with crop management advice and
Agriculture market information

» LLM-powered apps interpreting weather forecasts and satellite imagery for local
agricultural planning

- Virtual agronomists assisting with pest identification and management strategies
+ Al-driven systems for documenting and sharing traditional ecological knowledge

+ Chatbots helping smallholder farmers access climate-smart agriculture techniques

Disaster + Multilingual early warning systems delivering personalized emergency instructions
Preparedness
and Response

Al assistants supporting disaster response coordinators in resource allocation and
logistics

+ Chatbots providing mental health support and coping strategies during climate-
related disasters

» LLM-enhanced systems for rapid damage assessment and needs analysis post-
disaster

+ Virtual agents assisting in the development and updating of local disaster
preparedness plans
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Table 4 (continued): Emerging applications of Large Language Models in enhancing
climate resilience and sustainability for LDCs and SIDS

Application Area Use Case

Climate + Climate and natural hazard early warning systems

Migration
9 + Early warning on migration for early action and disaster risk reduction to human and

economic loss

+ Climate change and natural disaster monitoring

+ Monitoring and predictive analysis of human mobility and migration to address
prevention, preparedness, response, and recovery

Climate Finance » Al-powered proposal writing assistants for climate project funding applications
and Project

» LLM systems supporting the development of nationally determined contributions
Development 4 PP 9 P Y

(NDCs)
- Virtual consultants assisting in climate risk assessments for infrastructure projects
+ Chatbots guiding small businesses through green certification processes

Al assistants supporting the monitoring, reporting, and verification (MRV) of
climate projects

Policy Analysis » LLM-based systems analysing and summarizing climate policy documents for
and Decision decision-makers
Support

+ Al-driven scenario analysis tools for climate adaptation planning
+ Virtual policy advisors assisting in the development of climate-resilient regulations

+ Sentiment analysis tools gauging public opinion on climate policies from social
media data

+ LLM-enhanced stakeholder engagement platforms for participatory climate
planning

CleanTechnology | < Alassistants guiding users through the installation and maintenance of renewable
Adoption energy systems

+ Chatbots providing energy-saving tips and personalized recommendations for
households

- Virtual technicians supporting the troubleshooting of clean energy technologies

» LLM-powered platforms facilitating knowledge sharing on locally-appropriate clean
technologies

Al systems assisting in the adaptation of clean technologies to local contexts and
needs
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Table 4 (continued): Emerging applications of Large Language Models in enhancing
climate resilience and sustainability for LDCs and SIDS

Application Area  Use Case

Biodiversity » LLM-enhanced citizen science platforms for species identification and ecosystem
Conservation monitoring

+ Al assistants supporting indigenous communities in documenting and preserving
biodiversity knowledge

+ Virtual rangers providing information on protected areas and conservation
guidelines

» Chatbots educating tourists about responsible eco-tourism practices

» LLM systems assisting in the analysis of biodiversity data for conservation planning

Climate + Al-driven personalized climate communication tailoring messages to individual
Communication concerns and values
and Awareness

» LLM-powered fact-checking tools combatting climate misinformation

+ Virtual climate educators providing interactive lessons on climate science and
action

+ Sentiment analysis tools helping climate communicators refine their messaging
strategies

-+ Chatbots engaging citizens in local climate initiatives and volunteer opportunities

While Large Language Models (LLMs) are becoming more accessible, significant barriers remain
for developing countries, particularly SIDS and LDCs. High computational demands, costs of fine-
tuning, and deployment challenges limit access in resource-constrained regions. The extensive
infrastructure and expertise required for effective training are typically available only to large
tech companies in developed nations, rendering LLMs out of reach for many organizations in
developing areas. In contrast, smaller Al/ML models with lower computational needs are often
more practical in these contexts. Most major LLMs are trained primarily on English-language data,
reducing their effectiveness in non-English-speaking regions and exacerbating the digital divide.
The centralization of LLM development by companies like OpenAl, Google, and Meta further
limits the influence of smaller players from developing countries. This disparity has implications for
knowledge representation and inclusivity in Al systems, as these models often overlook diverse
global perspectives. Overall, while LLMs are accessible on certain platforms, their practical use is
largely restricted to well-resourced entities, making smaller, specialized Al/ML models more feasible
for developing countries. Addressing these challenges requires initiatives for democratizing Al
resources, including multilingual training data and adaptable Al models.
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The main challenges and risks that can be encountered while deploying the Al use cases presented
in Section 4.8 are:

» Language and Cultural Bias: Many LLMs are trained on data primarily from dominant
languages and cultures, overlooking local dialects and contexts.

+ High Computational Requirements: LLMs demand significant processing power, often
placing them out of reach for institutions lacking infrastructure.

+ Risk of Misinformation: LLMs can generate plausible sounding but factually incorrect
information if not carefully curated and verified.

- Data Privacy and Sovereignty: Using external LLM services might involve sending local data
to remote servers, raising sovereignty and confidentiality issues.

4.9. Education and Community Engagement

Education and community engagement are critical components in the global effort to combat
climate change. Al systems offer innovative tools and approaches that can enhance these efforts
by making climate information more accessible, engaging, and actionable. There are various ways in
which Al systems can support education and community engagement and contribute to empowering
communities to take informed actions towards a sustainable future.

4.9.1. Raising Awareness of Climate Change through the
Use of Artificial Intelligence

Al systems can play a critical role in raising awareness about climate action by providing powerful
tools for data visualization, predictive modelling, and scenario analysis. These tools can help illustrate
the impacts of climate change, highlight the benefits of mitigation and adaptation strategies, and
demonstrate the urgency of taking action.

At COP28, Parties emphasized the need to raise awareness about the potential roles and impacts
of Al in advancing the outcomes of technology needs assessments and the joint work programme
of the Technology Mechanism for 2023-2027 (Decision 9/CP.28, Decision 1/CMA.5, Decision 14/
CMA.5). The Technology Mechanism Initiative on Al for Climate Action provides a platform for policy
discussions, raises awareness about the potential of Al for climate action, facilitates knowledge
exchange among stakeholders, and supports capacity-building efforts to harness Al and develop
locally-led climate solutions.

Public awareness campaigns can utilize Al to personalize messages and reach a broader audience

through social media and other digital platforms, and Al systems can help identify and target key
demographicsinthis process, ensuring that climate action messagesresonate with diverse audiences.
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In reference to “Visualizing the Future: Artificial Intelligence in Climate Action” (UNDP, 2024), an
educational session demonstrated the power of images in raising awareness by using GenAl in
scenario planning and citizen participation, where participants interacted with Al through their mobile
phones, gaining new insights and contributing unique perspectives. This approach made climate
change more tangible and urgent, fostering greater engagement from the audience and showing
how this methodology can enhance citizen involvement, anticipate climate risks, and support
inclusive, effective policy-making (UNDP, 2024). The next subsection will document how other Al-
powered educational tools can contribute to raising awareness of Al for climate action.

4.9.2. Artificial Intelligence-powered Tools for Climate
Change Education

Al-powered educational tools can improve climate change education by providing interactive and
engaging learning experiences. For instance, Al-driven simulations and virtual reality environments
can allow students to explore the effects of climate change in immersive ways. Intelligent tutoring
systems can offer personalized learning pathways, adapting to each student’s knowledge level and
learning style. These tools can also provide real-time feedback and assessments, helping educators
tailor their instruction to meet the needs of their students. Moreover, Al systems can curate and
recommend up-to-date educational content, ensuring that learners have access to the latest
scientific findings and resources.

Recent studies have explored the potential of Virtual Reality (VR) technology to enhance awareness
of climate change. Thoma et al. (2023) aimed to determine whether VR visualization impacts climate
change awareness and environmental attitudes more effectively than traditional media. Using a
model of the Aletsch glacier melting over 220 years, the study found that environmental awareness
increased significantly only in VR conditions, suggesting VR's potential to foster attitude change,
regardless of the sophistication of the VR environment. Dhunnoo et al. (2023) conducted a case
study with urban planning professionals to assess the effectiveness of Immersive Virtual Reality (IVR)
in raising climate change awareness. Utilizing mobile LIDAR technology to create navigable urban
models, participants could interact with a simulated inundated environment. Feedback indicated
that IVR is a valuable educational tool, enhancing understanding of climate change impacts and the
necessity of building resilient environments. Xu et al. (2022) focused on developing a VR application
to simulate sea levelrise and its effects on local scenery by 2100. This study highlighted VR's potential
as a high-quality educational tool, offering a more immersive experience than traditional media. The
ongoing work includes porting the system to Augmented Reality (AR) and further evaluation of the
tool's effectiveness.

Al systems can analyse vast amounts of climate data, creating more accurate and dynamic VR
simulations that reflect real-time changes in the environment. AloT integrates Al systems with
connected devices, allowing for real-time data collection and updates to VR environments,
making simulations more interactive and responsive (Bibri, 2023). These technologies can
provide personalized and context-specific information, improving the educational impact of VR
and AR applications. Al tools enable VR experiences to become more engaging and informative,
ultimately fostering greater awareness and proactive behaviour towards climate change mitigation
and adaptation. Al has demonstrated significant importance in processing vast troves of data to
enhance immersive experiences and enable human-like intelligence in virtual agents using ML, DL,
NLP, among others (Huynh-The et al., 2023). This capability can enhance Al-powered tools for
climate change education by providing more engaging and interactive learning environments. With
these advanced Al techniques, educational tools can simulate complex climate scenarios, provide
personalized learning experiences, and offer real-time feedback, thereby improving understanding
and fostering proactive responses to climate change challenges.
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Furthermore, understanding the factors influencing Al acceptance is important for effectively
integrating Al-powered tools into educational settings, particularly for enhancing climate change
education. Osmanand Yatam (2024) highlighted the importance of perceived usefulness, ease of use,
and technological innovativeness in shaping the acceptance of Al and its enabled transformations.
Among these factors, perceived ease of use is identified as the most influential, highlighting
the necessity for user-friendly interfaces and streamlined processes. Practical implications for
higher education institutions include the need for targeted interventions to boost technological
innovativeness and foster a positive organizational climate conducive to innovation.

4.9.3. Artificial Intelligence-powered Tools for Promoting
Sustainable Practices

Al systems can support the promotion of sustainable practices by providing insights into individual
and collective behaviours and suggesting actionable steps to reduce environmental impact. For
example, Al-powered apps can track energy consumption, waste production, and carbon footprint,
offering tailored recommendations for improvement to citizens, communities, businesses, and
organizations. These tools can also facilitate community initiatives by identifying local sustainability
challenges and opportunities.

Kasinidou (2023) focused on the growing necessity for public Al literacy due to the burgeoning
role of Al in daily life. This project sought to understand public perceptions of Al across different
demographics, including children and adults, and to promote Al literacy through an open course
tailored to various groups, such as educators, adults, the elderly, and children. Key findings revealed
that after a short course on Al, participants gained a better understanding of Al, recognized its
positive and negative aspects, and acknowledged the importance of educating both children and
adults about Al. These findings can be extended to raise awareness of Al's role in climate change
by incorporating climate-focused Al education in public literacy programmes. Enhancing public
understanding of Al’s applications in environmental contexts can drive more informed support for
Al-driven climate initiatives.

Table 5 provides a comparative analysis of various studies, offering insights into how Al systems

contribute to sustainability and showcasing the diverse applications of Al across different sectors in
fostering sustainable practices.
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Table 5: Artificial Intelligence-powered tools
for promoting sustainable practices

Research Applied Type of Al Application Key Findings Citations
Theme Methods Sustainable Areas
Practices
Alin promoting | Al, data Energy Human Al systems John and
green HRM analytics optimization, resource enhance Pramila (2024)
practices waste management efficiency in
reduction recruitment,
reduce
bias, and
promote eco-
engagement
among
employees.
Al'in adopting Al Organizational Human Al systems aid Gupta (2021)
green HRM sustainability, resource in adopting
practices green management green HRM
environment practices,
shifting focus
from profit
maximization to
sustainability.
Alin Al, ESG Environmental Financial Al systems Rani and Singh
sustainable problem- management help recognize (2024)
finance solving, environmental
financial issues, support
stability sustainable
finance, and
enhance
decision-
making.
The BI, Al, IoT, Resource BI, sustainable Integration Rane et al.
convergence ML, Big Data, efficiency, development of BI, Al, IoT, (2024)
of business Blockchain, environmental ML, and Big
intelligence Edge footprint Data improves
(BI), Al, and Computing reduction operational
sustainability efficiency

and minimizes
waste.




Research
Theme

Al and ML for
green shipping

Table 5 (continued): Artificial Intelligence-powered tools

Applied
Methods

Al, ML

Type of
Sustainable
Practices

Emission
reduction,
environmental
stewardship

Al Application
Areas

Maritime
industry

for promoting sustainable practices

Key Findings

Al-driven
technology
improves
vessel
operations,
decreases
emissions,
and promotes
sustainability.

Citations

Nguyen etal.
(2024)

Aland AR
in fashion
industry

Al, AR,
ORESTE

Waste
mitigation,
return
reduction

Fashion
industry

Consumers
prefer Al-
powered
mobile
applications
for camera-
assisted
measurements
and
synchronized
suggestions.

Karadayi-Usta
(2024)

Alin real estate
for ESG

Al, ML, RF

Energy
efficiency,
sustainable real
estate

Real Estate
industry

Al algorithms
assess energy
efficiency

and other
attributes,
impacting
property prices
and promoting
informed
decision-
making.

Walacik and
Chmielews-ka
(2024)

Alin
sustainable
education

Al

Environmental
responsibility,
resource
efficiency

Education

Al systems
enhance
sustainability
education
through
personalized
learning,
curriculum
development.

Harish et al.
(2023)




4.9.4. Artificial Intelligence-powered Tools for the Engagement of
Local Communities in Climate Action

Engaging local communities in climate action is important for driving grassroots change. Al
systems can enhance community engagement by providing platforms for collaboration and
communication. For instance, Al-driven social media analysis can identify influential community
members and organizations based on carefully selected criteria, helping to amplify their voices
and mobilize support. Al systems can also facilitate participatory decision-making by analysing
community feedback and integrating it into policy development. Furthermore, they can support
local climate initiatives by providing tools for monitoring and reporting progress, ensuring
transparency and accountability.

Investigating the societal impact of Al from a human-centred perspective has become an important
area of study (Shneiderman, 2020). Previous works in citizen science have identified various methods
of utilizing Al to engage the public in research. These methods include maintaining participant
engagement, ensuring data quality, classifying and labelling objects, predicting user interests, and
interpreting data pattern (Ceccaroni et al., 2019; Franzen et al., 2021; Lotfian et al., 2021; McClure
et al., 2020). While these works investigated the challenges of designing Al systems that enable
citizens to participate in research projects on a large geographic scale in a generalized way, an area
that has received little attention is how scientists can co-create Al systems with local communities
to address context-specific concerns and influence a particular geographic region. Therefore, Hsu
et al. (2022) investigated how Al can be leveraged to engage and empower local communities in
addressing societal and environmental issues. They emphasized the importance of integrating
hyperlocal, context-specific community data and knowledge into Al systems. Participatory design
and ethnographic methods ensure that Al systems are tailored to the specific needs of local
communities. The authors argue for a community citizen science (CCS) approach, where local
people are treated as collaborators rather than mere participants. This approach helps create Al
systems that are more aligned with community needs and expectations. However, it also requires
continuous adaptation of these systems to account for the dynamic nature of community issues
and long-term social changes. The CCS framework, a subset of citizen science, is advantageous
for co-creating solutions and generating social impact with communities dedicated to pursuing the
Sustainable Development Goals (Fritz et al., 2019).
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CASE STUDY

COMMUNITY INNOVATION LABS FOR CLIMATE
RESILIENCE (CO_LABS PROJECT)

Country: Indonesia
Entities involved: Deutsche Gesellschaft fiir Internationale Zusammenarbeit (GZ)
- FAIR Forward, Common Room Networks Foundation

Brief description

The Community-based Innovation Lab for Climate Resilience (Co_LABS) Project
addresses climate change challenges in Indonesia, particularly in rural and remote
areas like Pulo Aceh and Maros, Indonesia. This initiative establishes community-
based innovation labs that serve as collaborative platforms for local engagement in
climate resilience. These labs integrate local knowledge with advanced technologies
such as Al and IoT to develop and implement sustainable practices. Key activities
include conducting baseline studies, enhancing local capacity, and creating Al-driven
solutions and remote sensing applications tailored to the needs of the blue economy.
The project also emphasizes the integration of local traditional knowledge with
modern technological tools to address climate adaptation and mitigation effectively.

Climate Change Mitigation and/or Adaptation Impacts and Results

The Co_LABS Project was launched by the planting of 500 mangrove seedlings in
Maros, which directly contributes to coastal protection and carbon sequestration.
Thisactionnotonly addresses climate change directly butalso enhancesbiodiversity
and resilience of coastal ecosystems. The integration of Al and loT technologies
has led to improved environmental monitoring and management. In Maros, the
use of loT sensors has optimized fish farming operations, increasing efficiency and
sustainability. Capacity-building workshops, conducted in Bandung and planned
for Pulo Aceh and Maros, have empowered local communities with the skills needed
to manage and operate these technologies effectively. These workshops are crucial
for ensuring that technology adoption leads to long-term climate resilience and
sustainable development.

Challenges and Lessons Learned Regarding Development and Implementation

One significant challenge was integrating advanced technologies, like Al and IoT, with
traditional community practices. For example, ensuring that the loT sensors developed
were user-friendly and met the localneedsrequired to adapt technology for the context
of small-scale fish farms in Maros and subsistence agriculture in Pulo Aceh. Extensive
capacity-building efforts were necessary to make these technologies accessible and
understandable for community members. The project also encountered difficulties in
fostering active community engagement. This challenge highlighted the importance
of ongoing support and training to build trust and involvement. Clear communication
strategies and the involvement of local leaders were essential to address this issue.
Lessons learned include the need for adaptable technology solutions that align
with local conditions and practices, as well as the importance of continuous training
and development of local leadership to sustain project outcomes and ensure the
technologies’ long-term success.
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Incorporating indigenous knowledge (IK) into local Al models can enhance climate action strategies
by integrating traditional ecological wisdom. Al can document and analyse IK, preserving it for
broader climate solutions, such as mapping traditional land-use practices and predicting outcomes.
Collaboration with indigenous communities is vital to ensure respectful representation.

In the specific context of climate change, Chakravarty (2023b) proposed the integration of Aland ML
with Indigenous Knowledge Systems (IKS) to enhance climate communication channels, particularly
for extreme weather events in coastal regions. They found that blending Al/ML with IKS can improve
the accuracy and timeliness of climate predictions and mitigation strategies. Al models can, by
harnessing local knowledge, be finely tuned to the specific contexts of indigenous communities,
demonstrating a practical application of how Al can be enriched with traditional ecological wisdom to
foster climate resilience. Akanbi and Masinde (2018) developed a rule-based drought early warning
system using IK. Their research demonstrated that local IK could be effectively integrated into Al
models to forecast drought conditions. The system enhances the accuracy and relevance of drought
predictions and emphasizes the importance of incorporating IK into Al to address environmental
challenges more effectively. Balehegn et al. (2019) documented the indigenous weather and climate
forecasting knowledge of Afar pastoralists in Ethiopia. They found that traditional methods, when
combined with modern Al systems, offer dynamic and accurate weather predictions.

Molino (2023) explored inter-religious perspectives on Al and IK for environmental preservation,
emphasizing the ethical dimensions required for sustainable practices. Overall, leveraging traditional
wisdom alongside advanced technology can lead to more robust and culturally sensitive climate
action strategies, improving predictive capabilities and resilience. Continued collaboration between
indigenous communities and tech experts is essential for accurately representing IK and benefitting
both local and global ecosystems.

The main challenges and risks that can be encountered while deploying the Al use cases presented
in Section 4.9 are:

- Digital Literacy Gaps: Low levels of computer and internet literacy hinder the effective use of
Al-based educational tools.

+ Unequal Access: Communities without stable internet or sufficient devices cannot benefit
from Al-driven educational platforms or apps.

+ Cultural Relevance: Educational Al tools often lack localized content or language support,
limiting their impact in diverse settings.

+ Sustainability and Maintenance: Once external funding ends, ongoing updates and technical
support for Al-based education programmes may lapse.
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4.10. An Overview of Artificial Intelligence Applications in Key
Areas for Climate Action in Developing Countries

Drawing on insights from the comprehensive set of reviewed studies addressing the critical areas of
climate change mitigation and adaptation, Table 6 outlines Al applications organized by core topics
such as climate resilience and adaptation, sustainable energy access and transition, sustainable land
use and biodiversity, climate finance and economic resilience, and governance and capacity-building.
Highlighted areas of particular importance for LDCs and SIDS underscore the unique challenges and
opportunities these regions face in their efforts to combat climate change and achieve SDGs.

Table 6: Artificial Intelligence applications in
key areas for climate action in developing countries

Category Sub-category Details
Public Health " Vector-borne disease prediction and control using Al
Systems and local data

" Al-driven heatwave impact mitigation and alert systems

" Air quality monitoring and improvement for urban
areas

Healthcare resource allocation optimization

" Al-powered telemedicine for remote areas

Climate-resilient ' Al-assisted vulnerability assessment for high-risk
Infrastructure infrastructure

Designing climate-resilient buildings and roads using Al
simulations

Predictive maintenance for critical infrastructure
' Urban planning tools for climate adaptation

" Al-optimized disaster-resistant energy systems

Climate ' Climate and natural hazard early warning systems

Migration ' Early warning on migration for early action and disaster
risk reduction to human and economic loss

' Climate change and natural disaster monitoring
Monitoring and predictive analysis of human mobility and
migration to address prevention, preparedness, response
and recovery

Sustainable Renewable " Al-optimized microgrid systems for rural electrification
Energy Access Energy " Solar and wind resource assessment using satellite data and
and Transition Integration ML

Energy demand prediction for grid stability
' Smart energy storage management

" Al-driven demand-side management in energy-scarce
contexts
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Table 6 (continued): Artificial Intelligence applications

in key areas for climate action in developing countries

Category Sub-category Details
Energy Building energy management systems for tropical climates
Efficiency Industrial process optimization for key industries
Smart city energy solutions for urban areas
Al-powered improved cookstove technologies
Energy-efficient transportation for urban centres
Clean Technology Al-assisted adaptation of clean technologies to local
Localization needs
Supply chain optimization for local manufacturing
" Al-driven technology needs assessment
Skill development using Al-enhanced learning platforms
Al tools for local innovation ecosystems
Sustainable Deforestation Real-time satellite-based forest monitoring and alert
Land Use and Prevention and systems
Biodiversity Reforestation Al-driven reforestation planning

lllegal logging detection with drone imagery and ML
Community-based forest management tools

Agroforestry optimization for small-scale farmers

Biodiversity
Conservation

Species distribution modelling under climate change

" Al-powered acoustic monitoring systems

Ecosystem health monitoring with remote sensing and
ML

Wildlife corridor planning with climate projections

Al-assisted marine ecosystem management

Sustainable
Agriculture
and Land
Management

Al-powered precision agriculture tools

" Soil health monitoring with low-cost sensors

Crop rotation and intercropping optimization

Sustainable livestock management in arid regions

" Al-assisted erosion control and land restoration planning

Climate Finance
and Economic
Resilience

Access to Climate
Finance

Al-driven project proposal development and funding
matching

Climate risk assessment tools for vulnerable sectors

' Al-enhanced monitoring of climate project outcomes

Blockchain-based systems for climate finance tracking

Al-powered microinsurance solutions
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Table 6 (continued): Artificial Intelligence applications
in key areas for climate action in developing countries

Category Sub-category Details
Economic Al-assisted market analysis for climate-resilient industries
Diversification " Skills matching platforms for green job transitions
Supply chain resilience planning tools
Circular economy optimization
" Al-powered eco-tourism development planning
Disaster Risk Al-enhanced parametric insurance models
Financing Automated damage assessment tools using satellite
imagery
Risk pooling mechanisms optimization
Early warning systems linked to automatic payouts
Al-enhanced catastrophe modelling for data-scarce
environments
Governance Climate Data Low-cost, Al-enabled sensor networks for
and Capacity- Management and environmental monitoring
building Analytics Data quality improvement techniques

" Al-powered climate services for local decision-makers

Participatory sensing platforms for community-level data
collection

Knowledge management systems for South-South
learning

Policy Support
and Decision-

Climate policy impact simulation tools

Multi-criteria decision analysis systems

makin
9 " Al-assisted stakeholder engagement tools
Compliance monitoring systems
Al-supported development and tracking of NDCs
Technology " Al-driven technology needs assessment and matching
Transfer and South-South cooperation platforms
Localization . . -
Localized capacity-building programmes
" Al solutions for rapid prototyping
Intellectual property management tools for climate
technologies
Ethical Al and Al solutions optimized for low-resource environments

Digital Inclusion

" Tools for identifying and mitigating Al bias

Data privacy and security frameworks

Gender-responsive Al systems

" Al governance frameworks for LDCs and SIDS
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5. Artificial Intelligence
for the Implementation

of the Technology Mechanism

Joint Work Programme and Technology
Needs Assessment Outcomes

The potential of Al to bolster climate action strategies is outlined in the Technology Mechanism Joint
Work Programme (2023-2027) and TNAs outcomes for SIDS and LDCs. This section reviews the
thematic areas covered by the aforementioned framework and identifies opportunities where Al-
powered solutions can enhance their implementation.

The #Al4ClimateAction Initiative is strategically aligned with the Technology Mechanism Joint
Work Programme, highlighting the collaborative efforts of the TEC and the CTCN. The initiative
emphasizes six priority areas: national systems of innovation, water-energy-food systems, energy
systems, buildings and resilient infrastructure, business and industry, and technology needs
assessments. Each of these areas is central to addressing the intersection of Al and climate action,
focusing on both mitigation and adaptation strategies.

The initiative also directly supports the rolling work plan of the TEC (2023-2027) and the CTCN
Programme of Work (2023-2027), which outline comprehensive strategies for advancing climate
technologies in developing countries, with particular attention to LDCs and SIDS. Through these
work plans, the #Al4ClimateAction Initiative will guide the development and deployment of Al
technologies that align with global climate goals, ensuring that they are scalable, context-specific,
and inclusive of local needs and conditions.

More specifically, activities under the #Al4ClimateAction Initiative are designed to align with
the TEC objectives of enhancing innovation, scaling up technology transfer, and providing policy
recommendations to foster the effective deployment of climate technologies. The Initiative will
support capacity-building, facilitate knowledge sharing, and contribute to policy development,
helping countries integrate Al into their national climate strategies.
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The joint work with the CTCN further strengthens this effort by focusing on technology deployment
and technical assistance, offering a pathway to practical implementation in countries that need it
most. This integration ensures that Al applications are not only technologically advanced but are also
socially and environmentally sustainable, helping to bridge the gap between technology innovation
and on-the-ground impact in climate-vulnerable regions.

By effectively utilizing Al within these focus areas, the #Al4ClimateAction Initiative aims to accelerate
progress towards the Sustainable Development Goals (SDGs), with special emphasis on SDG 13
(Climate Action), while also aligning with the broader objectives set forth by the Paris Agreement.

By drawing on insights from Section 4, which explores Al applications across various domains of
climate action, the following subsections highlight the relevant thematic areas.

5.1. Artificial Intelligence for the Implementation of the
Technology Mechanism Joint Work Programme (2023-2027)

The Technology Mechanism Joint Work Programme outlines strategic priorities and key thematic
areas where Al can play an important role in enhancing climate resilience and sustainability in
developing regions. Based on the findings of Section 4, the following sub-chapters detail how Al-
powered solutions can support these initiatives and bolster their implementation.

5.1.1. National Systems of Innovation

Al systems can advance National Innovation Systems (NIS) by facilitating more efficient and effective
research, development, and deployment of new technologies tailored to local climate challenges.

Al itself reflects as a co-evolution of corporate and NIS. Lundvall and Rikap (2022) evaluated
China’s progress in Al and underscored the co-evolution of corporate innovation systems and
China’s national innovation system. Furthermore, Kouakou and Szego (2024) found that higher
NIS performance enhances Al integration, suggesting that policies aimed at improving NIS
performance can positively impact the integration of Al technologies in innovation activities. Key
dimensions of NIS performance, such as technological diversification, knowledge localization, and
originality, significantly boost Al integration, showing similar marginal effects. Moreover, the study
highlighted an inverted-U shaped relationship between the cycle time of technologies and the
level of Alintegration in innovation activities.

Developing countries can improve their innovation ecosystems, foster collaboration among research
institutions and industries, and streamline the commercialization of new technologies. Strengthening
national innovation systems is of high relevance for developing countries, particularly LDCs and
SIDS, to create their own Al solutions. Relying solely onimporting Al applications from the developed
countries can lead to increased debt and dependency, which can be detrimental to their economic
stability and sovereignty. Developing indigenous Al capabilities allows LDCs and SIDS to reduce their
reliance on foreign technologies, which often come with high costs and can exacerbate national debt.
These countries can develop cost-effective and contextually relevant Al solutions tailored to their
specific needs and challenges by investing in local innovation and research. This approach promotes
economic independence and sustainability, fostering a more resilient and self-sufficient economy.

Al applications designed in the developed countries may not always be suitable for the unique socio-
economic and environmental conditions of LDCs and SIDS. Local innovation systems can create Al
solutions that are better suited to addressing specific issues such as agricultural productivity, climate
resilience, healthcare, and disaster management. These countries can ensure that the solutions are
more effective and impactful by focusing on locally relevant Al technologies.
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Investing in national innovation systems also involves building local capacity and expertise in Al
and related fields. This investment can lead to a more skilled workforce capable of developing,
implementing, and maintaining Al systems. Moreover, it encourages knowledge transfer and fosters
a culture of innovation and technological advancement. Educational institutions and research centres
play a role in this process, offering training and development programmes to nurture local talent.

Developing home-grown Al solutions can create significant economic opportunities and jobs within
LDCs and SIDS. This development can stimulate the local economy, providing employment in
research, development, implementation, and maintenance of Al technologies. It can also lead to the
growth of tech start-ups and industries, further enhancing economic diversification and resilience.

By developing their own Al solutions, LDCs and SIDS can help bridge the digital divide that often
exists between developed and developing countries. Local innovation can lead to more affordable
and accessible technologies, ensuring that a larger portion of the population can benefit from Al
advancements. This inclusivity is crucial for achieving broader social and economic development goals.

However, there are challengesin building robust nationalinnovation systems, including limited financial
resources, lack of infrastructure, and insufficient technical expertise. International cooperation and
support from developed countries, international organizations, and private sector stakeholders
can support in addressing these challenges. Initiatives such as technology transfer, funding for
research and development, and collaborative projects can help build the necessary infrastructure
and capabilities.
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5.1.2. Water-Energy-Food Systems

Al-powered solutions can address the interconnected challenges of water-energy-food systems by
optimizing resource use and improving efficiency.

Indeed, the interconnected nature of water-energy-food systems demands integrated approaches
facilitated by Al. Advanced algorithms and sensor networks enable real-time monitoring and
predictive analytics, optimizing resource management and enhancing resilience against climate-
induced stresses. Case studies from developing countries underscore successfulimplementations of
Al'in enhancing agricultural productivity, sustainability practices, and water management strategies.

5.1.3. Energy Systems

Al has the potential to transform energy systems by improving efficiency and reliability in production,
distribution, and consumption, while promoting renewable technologies. Efficient energy systems
are crucial for sustainable development. Al enables predictive maintenance, optimizes energy
distribution, and integrates renewable sources. By forecasting weather patterns, Al can enhance the
operation of wind, solar, and thermal energy, maximizing output and grid stability. It also monitors
energy grids to detect anomalies, prevent outages, and balance supply and demand in real time.
Al-driven smart grids facilitate the integration of distributed resources, fostering a decentralized
and resilient energy system. Additionally, case studies highlight Al's effectiveness in boosting energy
efficiency and lowering GHG emissions in developing countries.

5.1.4. Buildings and Resilient Infrastructure

By leveraging Al applications in building management systems, significant improvements can be
made in energy efficiency, structural resilience, and maintenance processes, all of which support
climate-resilient infrastructure development.

Energy efficiency and building management: Al systems optimize various aspects of building
management, including heating, ventilation, air conditioning (HVAC), lighting, and other operational
systems. By analysing real-time data, they can adjust these systems to reduce energy consumption
and enhance occupant comfort. For instance, they can predict the optimal times to heat or cool a
building based on weather forecasts and usage patterns, leading to substantial energy savings.

Predictive maintenance: Al-driven predictive maintenance is another key application. Al systems
can predict potential failures before they occur, allowing for pre-emptive repairs by continuously
monitoring the health of infrastructure assets. This extends the lifespan of assets and reduces
maintenance costs and prevents unexpected downtime. Predictive maintenance uses data from
various sensors and historical performance records to identify signs of wear and tear, ensuring
timely interventions.

Resilient infrastructure design and construction: Al systems support the design and construction
of resilient infrastructure by analysing environmental data and simulating the impacts of various
hazards, such as floods, earthquakes, and extreme weather events. These simulations help engineers
and architects design buildings and infrastructure that can withstand such events, thereby enhancing
resilience. Al systems can model different scenarios and their potential impacts, providing valuable
insights that inform better disaster preparedness strategies and building practices.

Sustainability: Al systems contribute to sustainability in the construction and operation of buildings

by promoting the use of eco-friendly materials and energy-efficient technologies. They can assess
the environmental impact of different building materials and construction methods, recommending
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the most sustainable options. During the operational phase, they continuously optimize energy and
resource use, contributing to lower carbon footprints and more sustainable living environments.

5.1.5. Business and Industry

Al-powered analytics help minimize environmental footprints, optimize supply chains, and meet
regulatory standards, leading to lower costs and improved innovation. In business operations, Al
automates routine tasks, analyses large datasets for insights, and optimizes logistics, resulting in
reduced errors and better decision-making. It aids in demand forecasting, inventory management,
and waste reduction, enhancing service delivery. In manufacturing, Al can enhance production
through predictive maintenance, which anticipates equipment failures, and real-time quality control
that identifies defects, ensuring consistent product quality. Data analytics and machine learning
further optimize production schedules and resource allocation, improving efficiency and reducing
energy consumption.

5.1.6. Emerging and Transformational Adaptation Technologies

Emerging adaptation technologies require innovative approaches driven by Al to effectively mitigate
the evolving risks and impacts of climate change and other global challenges. Al technologies offer
innovative solutions for climate adaptation, significantly enhancing adaptive capacity and resilience
across various domains.

Al systems play a critical role inimproving early warning systems by analysing extensive environmental
data to predict extreme weather events and issue timely alerts to vulnerable communities. This
predictive capability is instrumental in minimizing the human and economic toll of climate-related
disasters, enabling proactive measures and swift responses.

In ecosystem monitoring and nature-based solutions, Al systems optimize site selection and monitor
project progress in initiatives such as reforestation and wetland restoration. By enhancing ecosystem
resilience and promoting carbon sequestration and biodiversity conservation, these Al-driven
interventions contribute significantly to sustainable environmental management.

Moreover, Al-driven innovation facilitates the development of new technologies resilient to climate
impacts. These advancements bolster infrastructure durability but also promote sustainable
practices essential for long-term adaptation and mitigation strategies. Al systems contribute to
building climate-resilient communities and enhancing overall societal resilience by fostering the
adoption of resilient technologies.

Furthermore, Al systems empower community engagement by facilitating participation and
awareness through educational tools. These initiatives empower local populations to actively engage
in climate adaptation efforts, fostering a sense of ownership and collective action towards building
resilient communities.

In terms of policy and governance, Al systems support evidence-based policymaking by analysing
comprehensive datasets on climate impacts, adaptation strategies, and societal vulnerabilities. This
analytical capability aids governments in developing effective climate policies and regulations that
address local challenges and promote SDGs.

Overall, Al's integration into emerging adaptation technologies underscores its instrumental role
in advancing climate resilience strategies. Developing countries can leverage Al's capabilities to
enhance their resilience to climate change impacts while fostering sustainable development and
environmental stewardship.
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In summary, Al-powered solutions offer significant potential to support the implementation of the
Technology Mechanism Joint Work Programme across various thematic areas. From enhancing
NSI and optimizing water-energy-food systems to revolutionizing energy systems, buildings, and
infrastructure, Al technology can drive efficiency, sustainability, and resilience. It can play a central
role in achieving the objectives of the joint work programme and advancing the global goals of
sustainable development by addressing the unique challenges and opportunities in business and
industry, as well as fostering the development of emerging adaptation technologies.

5.2. The Role of the CTCN in Technical Assistance and
Capacity-building-Projects

The CTCN has already initiated several technical assistance and capacity-building projects that
align with Al's potential. It has been actively supporting countries in deploying digital technologies
and innovative solutions to address climate change challenges. By facilitating the exploration and
integration of emerging digital tools, including Al and loT, CTCN assists countries in building resilience
and enhancing climate adaptation efforts. Table 7 showcases examples of CTCN's technical
assistance initiatives across various countries, highlighting the outcomes and impacts of these digital
interventions in diverse climate contexts (CTCN, 2023).

Table 7: Examples of CTCN technical assistance initiatives
on emerging digital technologies for climate action

Examples of the CTCN

Country Outcome and Impacts
Technical Assistance

Exploring emerging digital
technologies and piloting
digital tools: CTCN supports
countries in exploring

the climate potential of
emerging technologies such
as Al, loT, cloud computing,
blockchain, and open data,
while developing and piloting
locally-adapted digital
solutions to drive climate
adaptation and increase
resilience in communities.

Cambodia: Climate risk assessment for subnational adaptation and
establishment of a local climate information system (LISA) for climate
change adaptation.

Eswatini: Strengthening the National Disaster Management Agency’s
(NDMA) application of UAV and remote sensing technology for vulnerability
assessments and response planning.

Georgia: Building up integrated monitoring and early warning forest fires
detection systems in the Borjomi-Kharagauli National Park by innovative
remote sensing tools.

Nepal: Customized weather and climate information system for climate-
resilient agriculture.

Samoa: Development of a framework and methodology to measure carbon
sinks from the forestry sector using Earth observation.

South Africa: Tree monitoring for climate adaptation in the City of
Mbombela.

Sudan: Soil erosion valuation to support climate-resilient agriculture and
food security.
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CTCN's technical assistance efforts have laid a foundation for digitalization in climate action,
incorporating various innovative tools and platforms. While Al has not yet been a primary focus within
most of these projects, elements related to Al, such as ML for predictive analytics and the use of loT
for real-time data collection, have been integrated. These aspects represent a starting point that
could be expanded to include more Al-driven applications explicitly. Future initiatives could harness
Al's potential more strategically to support comprehensive climate action, leveraging its ability to
process vast amounts of data, improve decision-making, and optimize climate-related interventions.

The existing groundwork laid by the CTCN through its digitalization efforts creates promising
opportunities for the integration of Al into climate action in developing countries. CTCN can
significantly advance climate resilience and adaptation strategies in LDCs and SIDS by enhancing
current projects with more Al-driven tools and technologies. Expanding these initiatives will be crucial
for scaling Al's role in tackling the diverse and evolving challenges posed by climate change globally.

Initiatives like CTCN's capacity-building programmes aim to support the adoption of Al in climate
technology by providing training and resources to local stakeholders. These programmes also offer
technical assistance, such as developing digital platforms for climate data management and early
warning systems powered by Al. Additionally, CTCN has facilitated technical assistance projects
focused on integrating digital tools into climate adaptation and mitigation efforts. For instance,
Al-driven tools have been developed in collaboration with local governments and institutions to
enhance agricultural resilience, improve water resource management, and optimize energy systems.
These efforts align with the objectives of the Technology Mechanism, demonstrating Al's relevance
in supporting capacity-building and technical assistance in LDCs and SIDS.

Expanding on these examples highlights how Al applications are already being explored and applied
within the context of the Technology Mechanism Joint Work Programme. This integration ensures
that Al is positioned as a key enabler for achieving the technology and capacity-building goals set
out by the TEC and CTCN, ultimately enhancing the effectiveness and scalability of climate actions
in developing countries.

5.3. Artificial Intelligence for the Implementation of
TNA Outcomes

TNAs provide a road map for technology deployment aligned with national climate priorities. The
implementation of TNAsis essential for developing countries to identify and prioritize their technology
needs for effective climate action. These assessments encompass a range of thematic areas, including
energy, agriculture, water management, infrastructure, and industry, among others. Each TNA
identifies specific technology needs and proposes action plans to integrate these technologies into
national climate strategies. The main focus is on how Al-powered solutions can support and enhance
the implementation of TNA outcomes across the following thematic areas, including technology
action plans and capacity-building initiatives, drawing on insights and findings from Section 4 of the
technical paper, which explores Al applications in climate action across diverse domains. Among the
key opportunities identified, Al-powered solutions can support the implementation of TNA outcomes
in energy sector, agriculture and food security, water management, infrastructure and resilient
construction, industry and manufacturing and disaster risk reduction. Effective Al implementation
aligned with TNA outcomes depends, however, on international cooperation, targeted policy
frameworks, and strategic investments in digital infrastructure and local expertise.
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5.4. Artificial Intelligence-powered Solutions Supporting
Sustainable Development Goals

Al has the potential to accelerate the achievement of SDGs by providing innovative solutions to some
of the most pressing global challenges. In the context of climate action and sustainable development,
Al systems can support the implementation of TNA outcomes by enhancing efficiency, improving
decision-making, and fostering resilience. An outline of specific SDGs and targets is presented in
Table 8 where Al-powered solutions can make a substantial impact, demonstrating how Al can be
strategically leveraged to promote sustainable development and climate resilience. These targets
were selected based on their direct relevance to climate action, technology needs, and areas where

Al applications have demonstrated or hold strong potential for impact.

Table 8: Al-powered solutions aligned with SDG goals and targets
for promoting sustainable development and climate resilience

SDG Target Al-powered Solution
SDG 2: Zero Target 2.3: Double + Al-powered precision agriculture: Using Al to provide
Hunger the agricultural real-time advice on crop management, pest control, and
productivity and efficient irrigation techniques to smallholder farmers, thus
incomes of small- increasing productivity and sustainability.
scale food producers
SDG 6: Clean Target 6.4: Al for water management: Utilizing Al to optimize water
Water and Increase water- distribution, monitor water quality, and predict water
Sanitation use efficiency and scarcity issues, enhancing sustainable water use and
ensure sustainable management.
withdrawals and
supply of fresh water
SDG 7: Target 7.2: Increase + Alinrenewable energy optimization: Implementing Al-
Affordable and the share of driven systems to optimize the integration and operation
Clean Energy renewable energy in of renewable energy sources like solar and wind, improving

the global energy mix

efficiency and reliability.

SDG 9: Industry,
Innovation, and
Infrastructure

Target 9.4: Upgrade
infrastructure and
retrofit industries

to make them
sustainable, with
increased resource-
use efficiency

Al'in smart infrastructure: Designing Al-based solutions
for developing climate-resilient infrastructure, predictive
maintenance, and optimizing resource use in industries.

SDG1:
Sustainable Cities
and Communities

Target 11.5: Reduce
the adverse effects
of natural disasters

- Al for disaster risk management: Deploying Al-powered

early warning systems and decision support tools to
enhance disaster preparedness and response, minimizing
the impacts of extreme weather events.
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Table 8 (continued): Al-powered solutions aligned with SDG goals and targets

SDG

SDG 13: Climate
Action

Target

Target 13.1:
Strengthen resilience
and adaptive capacity
to climate-related
hazards and natural
disasters

for promoting sustainable development and climate resilience

Al-powered Solution

Al'in climate resilience: Using Al to develop adaptive
strategies, improve disaster response, and enhance the
resilience of communities to climate impacts.

SDG 14: Life
Below Water

Target14.2:
Sustainably manage
and protect

marine and coastal
ecosystems

Al for marine ecosystem management: Implementing Al
technologies to monitor marine biodiversity, predict climate
impacts on marine life, and support sustainable fisheries
management.

SDG 15: Life on
Land

Target 15.1: Ensure
the conservation
of terrestrial

and freshwater
ecosystems

Al'in biodiversity conservation: Utilizing Al to monitor and
protect biodiversity, manage conservation areas, and
detectillegal logging and poaching activities.

SDG17:
Partnerships for
the Goals

Target 17.6: Enhance
international
cooperation on and
access to science,
technology, and
innovation

Al for global collaboration: Facilitating international
cooperation and knowledge sharing through Al platforms,
supporting global climate initiatives, and ensuring equitable
access to Al technologies.
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6. Risks and Challenges
of Using Al for Climate Action
in Developing Countries

Even though the main risks and challenges have been highlighted in each subsection of Section
4, this section takes a more structured approach by delving deeper into the primary challenges
and risks associated with the deployment of Al in SIDS and LDCs. The selection of these topics -
Energy and Water Consumption, Data Security, Digital Divide, Biases, and Youth Misrepresentation
- is based on their criticality to Al adoption in these contexts. Energy and water consumption
are particularly pressing due to infrastructure constraints in SIDS and LDCs, where high resource
demands could limit Al deployment. Data security was prioritized over data availability due to the
heightened vulnerability of digital infrastructures in these regions. Many LDCs and SIDS lack strong
data protection policies, cybersecurity frameworks, and institutional capacity to manage digital risks,
making Al systems particularly susceptible to data breaches, cyber attacks, and manipulation. These
vulnerabilities not only threaten sensitive information but can also undermine trust in Al-driven
climate initiatives, hindering adoption and scalability. The digital divide remains a major obstacle to
Al accessibility, affecting equitable participation in Al-driven climate solutions. Biases in Al models
disproportionately affect marginalized communities, reinforcing structural inequalities. Lastly, youth
misrepresentation is crucial given the demographic trends in many LDCs, where young populations
play a pivotal role in future innovation but face systemic exclusion from decision-making, financing,
and capacity-building opportunities. These five dimensions, therefore, represent key barriers that
require targeted interventions to ensure inclusive and responsible Al deployment in climate action.

6.1. Energy and Water Consumption

Al systems, particularly high-computation models, require significant amounts of energy for training
and operation, and in many LDCs and SIDS, energy resources are already constrained or heavily
reliant on fossil fuels. Additionally, water consumption is a key sustainability concern, as cooling Al
data centres and infrastructure can strain limited freshwater supplies, particularly in water-scarce
island nations.
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The life cycle of Al technologies - including their development, deployment, use, application,
maintenance, and disposal - systematically stresses energy supplies and contributes to GHG
emissions. These impacts are categorized into direct, indirect, rebound, and systemic effects, which
pose varied risks to environmental sustainability (Bibri et al., 2023). Direct effects include not only
the energy-intensive processes involved in training and running Al models, which contribute to GHG
emissions, but also the energy demands of data storage, cooling systems, and data transmission
associated with these technologies. They are especially significant when Al relies on data centres
powered by non-renewable energy sources.

Indirect effects involve the secondary impacts of widespread Al adoption, such as driving up
overall electricity demand, increasing water usage for cooling systems, and accelerating the
depletion of natural resources. The indirect effects also include the increased demand for the
production of hardware components and infrastructures that support Al, which require significant
energy and resources.

Rebound effects occur when efficiency improvements or innovations inadvertently lead to higher
overall consumption, counteracting intended energy savings. In the case of Al, enhanced model
performance and efficiency can increase demand, thereby expanding Al applications in ways that
raise total resource consumption.

Systemic effects go beyond these direct, indirect, and rebound consequences by capturing the
broader, interconnected, and long-term impacts of Al technologies on the environment and society
as a whole. Systemic effects can involve the following:

+ The way Al-driven processes influence societal behaviours, such as increased reliance on
energy-intensive technologies.

» The cumulative and compounding impacts of widespread Al adoption on infrastructure,
resource extraction, and waste production.

+  The creation of feedback loops where Al ecosystems might reinforce unsustainable practices,
thereby exacerbating environmental degradation.

In the context of Al and climate change, systemic effects highlight the interconnected and cascading
consequences of Al adoption across multiple layers of society and the environment. These effects
are often difficult to predict and can lead to unintended ripple effects that extend beyond immediate
energy consumption. Addressing these challenges requires comprehensive strategies that integrate
sustainable development, optimize resource use, and ensure responsible Al governance to mitigate
these cascading impacts. Recognizing these challenges and proactively addressing them enables
society to leverage Al in paving the way for a sustainable future. In this context, proactive measures
include accelerating the decarbonization of electric grids, fostering markets for low-carbon
materials, and promoting the development of energy-efficient hardware. Optimizing Al algorithms
and encouraging sustainable practices in Al development are also critical steps towards reducing the
environmental footprint of Al.

The International Telecommunication Union (ITU, 2024b; 2024c) underscores the impact of the
information and communications technology (ICT) sector on environmental sustainability, with a
special emphasis on the role of Al, as part of its Green Digital Action Initiative. While the ICT sector
provides unparalleled opportunities for advancing sustainability, such as optimizing energy systems,
implementing smart grids, enhancing industrial efficiency, and offering valuable insights into climate
change patterns, it also poses substantial environmental challenges, including increased energy and
water consumption, GHG emissions, and the demand for critical raw materials. The Green Digital
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Action initiative focuses particularly on Al's impact in this broader context emphasizing the need to
address the environmental implications of Al to ensure sustainable Al development by enhancing the
energy efficiency of Al systems and promoting the use of renewable energy sources for powering
data centres.

6.1.1. Quantify the Artificial Intelligence Carbon Footprint

Al depends on data centres that require significant energy to compute, analyse, and categorize data
(Brevini et al, 2021). Training DL models requires substantial computation time and resources, as
they learn a comprehensive representation for better data analysis, with costs increasing further if
they engage in continuous learning. Anthony et al. (2020) introduced Carbontracker, a tool designed
to monitor and forecast the carbon footprint associated with training DL models. The tool aims
to provide insights into the environmental impact of Al training processes by accurately tracking
energy consumption and resulting carbon emissions (Anthony et al., 2020). A study published in
2019 attempted for the first time to quantify the energy consumption of running Al programmes and
found that a typical Al training model in NLP can emit over 284 tonnes of CO2 equivalent (Strubell
etal., 2019).

With the growing adoption of Al, the energy consumption of data centres is increasingly under
scrutiny, highlighting the need for more accurate data collection and improved assessment practices.
The report published by IEA (2024a) points out significant uncertainties regarding the electricity
demand of data centres, influenced by factors like the pace of Al deployment, the variety of Al
applications, and the potential for advances in energy efficiency. As stated in the executive summary
of the report (IEA, 20243a), electricity consumption from data centres and Al systems is projected to
double by 2026. Today, data centres account for around 1% of global electricity consumption, and
annual electricity consumption from data centres globally is about half of the electricity consumption
from household IT appliances, like computers, phones and TVs. By 2026, their total electricity
consumption could surpass 1000 terawatt-hours (TWh). However, when considered in a broader
context of total electricity consumption growth globally, the contribution of data centres is modest.
Global aggregate electricity demand grows by 6750 TWh by 2030. While growing digitalization,
including the rise of Al, is one factor, continued economic growth, electric vehicles, air conditioners,
and the rising importance of electricity-intensive manufacturing are all bigger drivers.

At the same time, the IEA emphasizes that the increasing integration of Al into data centre operations
could contribute both to higher energy demand and potential efficiency gains. Advancements in
energy-efficient cooling technologies, Al-driven energy optimization, and workload distribution
strategies have been identified as crucial factors in mitigating consumption increases. Furthermore,
regional disparities in data centre electricity demand remain an area of concern, with certain locations
experiencing greater grid strain due to high concentrations of Al-driven workloads. To mitigate this
substantial rise in energy consumption, updated regulations and technological advancements,
especially focused on efficiency improvements, will be essential. Additionally, the IEA underscores
the importance of enhancing monitoring mechanisms to refine projections and enable proactive
energy planning. To accurately track historical developments and better predict future trends,
enhanced monitoring and detailed electricity usage data for the data centre industry will be critical
(EAI, 2024a).
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Numerous studies have assessed the energy consumption required for producing and training
GenAl models. Researchers estimated that the development of GPT-3 consumed approximately
1287 megawatt hours of electricity and generated 552 tonnes of CO2 equivalent (Saenko, 2023).
In addition to the direct energy consumption, there are significant environmental costs linked to the
production and operation of Al models. These include the extraction of rare minerals for graphics
processing units (GPUs) and the vast amounts of water required to cool large data centres (Luccioni,
2023). Data centres, which are integral to Al operations, consume massive amounts of both energy
and water, primarily for air conditioning systems. Notably, training the LaMDA language model is
estimated to have used around one million litres of water (Dolby, 2023). Moreover, there are location-
specific variables that influence the energy and water usage of LLMs. For example, Microsoft
reported that its data centres in Asia are significantly less water-efficient than those in the Americas
(Dolby, 2023). Seasonal factors also play a role, as hotter summers lead to greater water consumption
due to the increased need for cooling and higher evaporation rates (Dolby, 2023). These studies
collectively highlight the multifaceted environmental impact of GenAl models, extending beyond
energy consumption to include broader resource use and location-dependent inefficiencies.

Researchers estimate that training a model like GPT-4 generates approximately 300 tonnes of
carbon for its entire training process (Kumar and Davenport, 2023; Deeb and Garel-Frantzen,
2023). As Al technology advances, this carbon footprint is expected to grow because the
increasing complexity of models and the larger datasets they require will demand even more
energy (An et al., 2023). On the user side, a GenAl query has been found to produce four to five
times more carbon emissions than a typical Google search or other search engine query (Saenko,
2023). Although the energy consumption per query is less than that of training the model, the
sheer volume of queries contributes to significant energy use, accounting for up to 90% of the
total energy consumed by GenAl (Kumar and Davenport, 2023). In addition to energy demands,
GenAl models also have notable water consumption impacts. For instance, it is estimated that
interacting with ChatGPT for 20 to 50 queries could require the equivalent of a 500-millilitre bottle
of water, depending on where the electricity powering the interaction is generated (Dolby, 2023).
Overall, the electricity demand for training LLMs like GPT-4 and operating Al systems can lead to
substantial carbon emissions, depending on the energy mix of the data centres involved. Notably
cutting-edge, rapidly evolving developmentsin ultra-low-power consumptionsintegrated circuits
hold a potential to scale down both the data centres and computational energy of Al algorithms.

According to Luers et al. (2024), Al currently contributes a small fraction of global GHG emissions —
approximately 0.01% - and even with rapid growth rates, its operational footprint is not expected to
be a significant contributor to GHG emissions in the foreseeable future. The sector’s rapid evolution
makes it nearly impossible to reliably predict the energy and resource implications of Al technologies
beyond a few years. Some studies simply extrapolate past trends in Al electricity use, but these
projections often overlook critical social, economic, and technological factors, leading to significant
forecasting errors (Masanet et al., 2020). Moreover, taking an overly simplistic view of the indirect
emissions linked to Al risks underestimating its potential to drive climate solution breakthroughs, such
as rapidly advancing battery technology or optimizing renewable energy systems (Luers et al., 2024).

To accurately assess Al's environmental impact, there is a need for holistic scenarios that explore

alternative futures, considering factorslike resource use, technological advancements, and economic
shifts (Luers et al.,2024).
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6.1.2. Green Computing and Alternatives

The ongoing research in green Al, or green computing generally, is dedicated to creating Al
technologies that are environmentally sustainable. This burgeoning field aims to reduce the carbon
footprint and energy consumption associated with Al development and deployment (Lannelongue
etal., 2021; Verdecchia et al., 2022; Wheeldon et al., 2020; Yokoyama et al., 2023). Researchers strive
to minimize the environmental impact of Al systems by optimizing algorithms, enhancing hardware
efficiency, and improving data centre operations as Al systems can achieve similar performance with
lower energy use. Green Al initiatives often include developing metrics and standards to evaluate
and promote the sustainability of Al technologies (Schwartz et al., 2020; Raman et al., 2024).

From a different perspective, in the rapidly evolving landscape of GenAl, Small Language Models
(SLMs) are gaining attention as a resource-efficient alternative to the traditionally large and energy-
intensive models like LLMs. SLMs offer a more sustainable approach by leveraging fewer parameters,
which results in reduced computational and energy demands.

Instead of the trillion-parameter LLMs that consume considerable resources, SLMs are emerging as
smaller-scale, lightweight models that can leverage energy and compute resources more efficiently
for specific, purpose-built functions. This shift is particularly important as Al models become
increasingly integrated into various sectors where energy efficiency and accessibility are critical.

Additionally, in the energy-intensive pre-training phase, even the power savings differential between
SLMs is significant. The Llama 2 7B SLM generated 30.22 tCO2EQ of carbon emissions, while the
larger Llama 2 70B SLM generated a significantly larger 291.42 tCO2EQ in emissions. This stark
difference highlights the potential of SLMs to contribute to more sustainable Al practices, especially
as energy consumption becomes a growing concern in the tech industry. In theory, SLMs may
eventually be less prone to bias, as they train on smaller, more tightly managed datasets.

Furthermore, software defined storage, an emerging technology, enables dynamic scaling of
memory resources in a virtual (cloud-based) Al infrastructure architecture. This flexibility enables
more efficient use of resources, particularly during intensive Al tasks. Once the task is complete,
these memory resources can be efficiently scaled down, and physical memory can be spun down
when larger Al workloads are no longer in operation. This approach, already employed by the SWIFT
global financial system for real-time Al anomaly detection, significantly reduces data centre power
consumption in Al applications and offers similar benefits for Edge Al use cases.

While Al has the potential to drive significant advancements in climate action, its deployment in
developing countries must be carefully managed to avoid exacerbating energy and water resource
challenges. In many developing countries, including LDCs and SIDS, the growth of data centres
remains limited, often due to infrastructure constraints and high operational costs. Consequently, a
significant portion of Al-related data processing for these regions occurs in data centres located in
more developed regions, where electricity consumption and water usage are not substantial concerns.
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6.2. Data Security

Many LDCs and SIDS lack strong data protection policies, cybersecurity frameworks, and institutional
capacity to manage digital risks. This makes Al systems particularly susceptible to data breaches,
cyber attacks, and manipulation, which can undermine trust in Al-driven climate initiatives.

Data security is paramount worldwide. Handling large datasets raises significant privacy and
cybersecurity concerns - particularly in regions with weak regulatory frameworks — where sensitive
information can be misused or exposed to cyber threats. Al systems, as all the software, also remain
vulnerable to data poisoning and other adversarial attacks, underscoring the need for secure data-
handling practices.

Recent studies (Paracha etal., 2024; Rosenberg etal., 2021; Goldblum et al., 2022) discuss critical risks
like adversarial ML, data poisoning, and backdoor attacks, offering strategies to enhance resilience.
Implementing comprehensive data protection laws, clear data governance guidelines, and effective
enforcement mechanisms is vital to ensure public trust and participation in Al initiatives. Moreover,
as Al applications in climate action integrate diverse datasets, maintaining consistent security and
privacy standards is essential for safeguarding both the technology and the data it relies on.

Al security management involves adopting measures and practices designed to protect Al systems
and the data they process from unauthorized access, breaches, and malicious activities. Thisincludes
threat identification (Kumar and Kumar, 2023), access control (Song et al., 2023), and security
awareness and training (Solomon et al., 2022), as well as continuous monitoring and updates to
security protocols to adapt to emerging threats. Cybersecurity involves protecting digital systems,
including computers, servers, networks, and related data, from malicious attacks. It safeguards
internet-connected information and communication systems from malicious attacks and threats (Li
and Liu, 2021).

Incorporating comprehensive threat identification methods can help detect potential risks, such
as data breaches, unauthorized access, adversarial attacks, and insider threats (Rosenberg et al.,
2021; Goldblum et al., 2022), which are critical for maintaining the integrity of Al systems. Moreover,
implementing robust access control mechanisms ensures that only authorized individuals can
interact with Al systems and their data, further enhancing security. To achieve this, continuous
security awareness and training programmes are crucial to equip stakeholders with the knowledge
to recognize and mitigate security threats. By integrating these security measures, organizations can
create a resilient Al infrastructure capable of withstanding various threats and ensuring the ethical
use of Al technologies. Managing and mitigating the potential harms caused by the malicious use of
Alis a serious concern in the development and deployment of Al technologies.

The impact of Al on cybersecurity is dual-sided, presenting both negative and positive aspects.
On the positive side, Al-driven automation using ML algorithms has successfully prevented
attackers from using traditional attack methods on systems. This has enhanced the efficiency and
effectiveness of cybersecurity measures, allowing for real-time responses to emerging threats.
Integrating cybersecurity with ML encompasses two main aspects: ensuring the cybersecurity of
environments where ML is deployed and leveraging ML to enhance cybersecurity measures (Wazid
et al., 2022). This integration offers multiple benefits, such as providing increased security for ML
models, improving the performance of cybersecurity methods, and enabling the effective detection
of zero-day attacks through the use of techniques such as anomaly detection. Jada and Mayayise
(2024) found thatwhile Al caninfluence cybersecurity acrossits entire life cycle, providing advantages
such as automation, threat intelligence, and enhanced cyber defense, it can introduce challenges like
adversarial attacks and the necessity for high-quality data, which could result in inefficiencies. Liu
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and Zhang (2023) found that employing DL technology for computer network security detection
enhances security performance. This approach is characterized by high safety performance, a high
detection rate, and a low false alarm rate. It enables timely monitoring of network vulnerabilities and
effectively detects security attacks on the computer network.

Within the context of Al Trust, Risk, and Security Management (Al TRISM), data security holds
particular significance. The increasing reliance on Al systems brings emerging concerns related
to risk, trust, and security. The Al TRISM framework is a theoretical approach to implementing
Al in organizations and (Habbal et al., 2024) included five illustrative scenarios that highlight its
effectiveness.

6.3. Digital Divide and Equitable Access to Artificial
Intelligence for Climate Action

In SIDS and LDCs access to electricity and ICT infrastructure is often limited, restricting the
ability of end-users to benefit from Al solutions and hindering the local Al ecosystem to develop
relevant localized applications. In many rural and remote areas, unreliable electricity and poor
internet connectivity can make it difficult to deploy and maintain Al technologies. For example,
farmers in remote areas may not be able to access Al-driven agricultural advice due to lack of
internet access, limiting their ability to benefit from advanced farming techniques. Nevertheless,
in developing countries, satellite internet emerges as a promising solution to bridging the digital
divide, especially in rural and remote areas where traditional broadband infrastructure is either
lacking or entirely non-existent.

Since the emergence of ICT, the digital divide has highlighted significant disparities in access to
and use of digital resources and technologies among different user groups or populations. This
divide, originally framed around access to and use of computers and the internet, has evolved
with technological advancements. The advent of Al exacerbates these inequalities due to the high
demand for computational resources, context-specific Al training and testing data, access to pre-
trained models, specialized knowledge, and advancedinfrastructure, which are often concentrated
in more developed regions and among more privileged groups. In this context, infrastructure
entails the foundational systems and services required to deploy and support Al technologies
effectively. This includes physical hardware such as data centres, network connectivity, and cloud
computing resources needed for processing large datasets and running complex Al models. It
also encompasses software infrastructure like platforms for Al development, databases, and
APIs, as well as organizational structures that support Al operations, such as technical support and
maintenance teams.

The prevailing economic landscape of machine learning (ML) as a technological domain suggests
a trend towards a natural monopoly, presenting complex challenges and implications across various
sectors. Research has addressed how this concentration within the Al market impacts broader
dimensions, highlighting the need for a critical reassessment of Al development and deployment
strategies in the context of global digital equity and local solution generation. Based on the literature,
some ML-based applications may exhibit the traits of a natural monopoly (Narechania, 2021). This
market concentration leads to numerous economic, social, and political issues, such as reduced
innovation and quality, the potential for bias and misinformation, safety risks due to single points of
failure, and a lack of democratic oversight and digital sovereignty. Moreover, market concentration
and the current structure of the Al (research) ecosystem drive an Al monoculture, which incentivizes
the development of marketable and profitable Al systems, without considering the public interest
and maximizing society’s wellbeing (Ahmed et al., 2023). This pertains specifically to fields where
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market gaps and market failures prevail, such as last-mile services in global majority countries. As
a core feature of policy-making, education, and training programmes for Al and climate change,
governments should prioritize addressing the global digital divide, which currently leaves billions
worldwide without internet access (Sandalow et al., 2023) and skilled professionals without the
opportunity to develop meaningful localized solutions due to prevailing data poverty and the
compute divide (Besiroglu et al., 2024).

It is particularly important to note that data scarcity greatly affects the efficacy of Al-driven climate
change initiatives, especially in SIDS and LDCs. These regions often face challenges that exacerbate
the digital divide, affecting their ability to implement advanced Al solutions for climate action. This
includes fewer weather stations, limited access to advanced satellite imagery, and sparse sensor
networks, which are key to gathering the comprehensive environmental data needed to train Al
models, restricted access to global data sets due to high costs or licensing restrictions.

Unequal access to both physical and digital resourcesis an aspect that remains inadequately explored
in current literature (Walsh et al., 2020).

6.3.1. Closing the Data Divide

Addressing this gap involves improving data collection infrastructures, including the generation and
use of disaggregated environmental and demographic data (by gender, age, geographic location
(rural/urban, coastal/inland), income level or socio-economic status, indigenous identity, etc.), and
advocating for open data initiatives, as well as fostering international collaborations to democratize
knowledge transfer and ensure equitable access to Al technologies and climate data.

These efforts are complemented by training programmes for local personnel, including youth
stakeholders, in data management and analysis. Furthermore, open data initiatives that promote the
sharing of climate data enhance accessibility and utility, especially in regions with limited resources.
Synthetic data generation also plays a role where real data are lacking, enabling the training of more
adaptable Al models. Moreover, collaborative Al development that integrates input from local
stakeholders and international experts ensures the creation of tailored solutions that address specific
regional challenges and enhance climate resilience effectively. Additionally, data-poor contexts can
especially benefit from the development of novel approaches to making Al training more efficient
(Gunasekar et al., 2023) and research focusing on smaller, task-specific models (Varon et al., 2024).
These advancements are often driven by open-source Al, which has played a role in democratizing
access to Al tools and enabling innovation, particularly in resource-constrained environments.
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CASE STUDY
CLOSING THE CLIMATE DATA DIVIDE IN DEVELOPING COUNTRIES

Country: LDCs and SIDS
Entities Involved: Microsoft Al for Good Lab, Planet Labs PBC, African
Development Bank, African Risk Capacity, African Climate Foundation

Brief Description

Access to reliable climate data is essential for governments and decision-makers
in developing countries to mitigate the worst effects of climate change. Efforts to
democratize access to climate data align with broader global initiatives to accelerate
progress towards the 17 Sustainable Development Goals (SDGs), adopted by UN
member states in 2015 as part of the 2030 Agenda for Sustainable Development.
High-quality climate data can unlock adaptation and resilience projects, ensuring that
available resources are directed to areas where they can have the greatest impact,
both before andin the aftermath of climate-related disasters. However, the developing
countries face a significant gap in both reliable climate data and the availability of data
scientists to analyse and apply it. Research indicates that for every data scientist in
the developing countries, there are approximately five in the developed countries,
creating disparities in the ability to translate climate data into actionable insights. In
Africa, this gap widens further, with one data scientist for every 14 in the developed
countries. This imbalance contributes to what has been termed the ‘climate data
divide’ - a challenge that ongoing initiatives seek to address.

Microsoft is working to help close that climate data divide through the Al for Good
Lab and new partnerships underway across developing countries to accelerate action.
The Al for Good Lab applies Al, ML, and statistical modelling to tackle climate-related
challenges in partnership with leading nonprofits, research institutions, NGOs, and
governments as part of its portfolio to help solve humanity’s biggest challenges. By
offering our technology and expertise, we are helping advance the local development
of scalable solutions. In 2022, the Lab announced its expansion to Nairobi, Kenya,
where a team of world-class data scientists is working to improve climate resilience
across Africa.

Climate Change Mitigation and/or Adaptation Impacts and Results

It is a challenging time for planet Earth and no nation is immune from the risks and
perils faced by the ongoing impacts of climate change. There is additional complexity
in that the consequences of this existential threat to our planet’s survival are
unevenly distributed among the world's countries, with a greater burden falling on
the developing countries. The developing countries have contributed far less than
the developed countries to the actual causes of climate change, yet they have been
disproportionately impacted by extreme climate events including droughts, floods,
storms and, heatwaves, which contribute to other problems like food insecurity
and exacerbate existing challenges like poverty. Between 2008-2018, there were
2.2 billion people in the developing countries that were under high climate risk.
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InSeptember 2022, a collaboration with Planet Labs PBC and The Nature Conservancy
led to the development of the Global Renewables Watch - a first-of-its-kind living
atlas designed to map and measure all utility-scale solar and wind installations on
Earth using Al and satellite imagery. The Global Renewables Watch provides data
that helps both researchers and policymakers understand current renewable energy
capacities and assists decision-makers in search of effective options for renewable
energy development. Access to high-quality data is critical to enabling measurement
and realization of the SDGs.

Challenges and Lessons Learned Regarding Development and Implementation

Addressing and mitigating the effects of climate change requires collaboration across
industry, government, academia, and civil society. During initial discussions with
Kenyan stakeholders on the expansion of climate Al initiatives, it was emphasized
that an ideal outcome would involve African researchers leading projects that benefit
Africa within Africa. To support this approach, collaborations have been established
with organizations such as the African Development Bank, African Risk Capacity, and
the African Climate Foundation, focusing on improving climate resilience through data
and Al. These partnerships aim to facilitate the generation of additional climate data
and drive continued research. In addition to these partnerships, cooperation has been
initiated with the Kenya Red Cross Society, PATH, the Institute for Health Metrics and
Evaluation (IHME), and the Integrated Food Security Phase Classification (IPC) to
enhance the translation of climate data into actionable insights.

CASE STUDY

EMPIRIC_AI: AI-ENABLED ENSEMBLE PROJECTIONS OF
CYCLONE RISK FOR HEALTH INFRASTRUCTURE IN PACIFIC
ISLAND COUNTRIES AND TERRITORIES

Country: Pacific Island Countries including Fiji, Tonga, Vanuatu,

and Solomon Islands

Entities Involved: Dr. Chris Horvat, Dr. Berlin Kafoa, Dr. Craig McClain,

Dr. Michelle McCrystall, Dr. Liz McLeod, Dr. Eileen Natuzzi, Dr. Subhashni Taylor,
Dr. Callum Webster

Brief Description

Pacific Island Countries (PICs), such as Fiji, Tonga, and the Solomon Islands are
among the most susceptible to devastating tropical cyclones and climate change
impacts yet lack robust climate-specific data. The region comprises 10,000 islands
and atolls, but many of these are too small to be accurately represented in large-scale
global climate models. As these climate models are used to project future climate
change demonstrated in IPCC climate assessment reports, the inability to effectively
represent these islands means that future climate change projections are limited
across the region.
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Around 10 tropical cyclones form in the South Pacific every year. Limited data and
infrequent storms require the construction of resilient healthcare facilities in PICs. The
EMPIRIC_AI (EMulation of Pacific Island Risk to Infrastructure from Climate) project
addresses these issues using new statistical modelling and Al techniques. Thousands of
observationally-constrained synthetic tropical cyclones are tracked using a statistical
model, and a modified U-net is employed to emulate the pan-Pacific impacts of
these storms. This network allows for a rapid sampling of possible future states and
developing a statistical range of impacts of tropical cyclones at different hospital sites
across PICs such as potential number of landfalls, wind, and rainfall. By leveraging
these data, health governing bodies can make informed decisions regarding future
healthcare infrastructure planning.

Climate Change Mitigation and Adaptation Impacts

The primary aim of this project is to give site-specific projections of climate change
impacts on different health facilities across the Pacific Island Countries. These insights
can identify hospital sites at the highest risk from future tropical cyclones and extreme
weather events and can inform mitigation or adaptation measures that might be
needed for those specific sites, including preparation for flooding events or potential
relocation of hospital sites to limit continuing climate change impacts on the health
capacity of each region.

Challenges and Lessons Learned Regarding Development and Implementation

A key challenge in the EMPIRIC_AI project involves navigating the intersecting
domains of policy, healthcare, climate science, and data science. This multifaceted
challenge arises because each discipline poses distinct questions and often operates
with asymmetric knowledge bases. Specifically, the climate metrics that impact
individual Pacific hospitals are uniquely detailed, and comprehensive qualitative data
at the sectoral, national, or Pacific-wide level is hard to come by. Addressing this issue
requires a nuanced approach to contextualizing climate data and adapting Al tools
for stakeholders, which is being tackled through in-depth qualitative surveying and
collaborative efforts.

Much of the progress made in Al research in recent years was realized thanks to open-source and
open science practices. Open-source Al, in particular, has played a role in democratizing access
to cutting-edge tools and frameworks, enabling broader participation in Al development and
innovation. However, the rapid growth of open-source Al has also led to a complex and sometimes
chaotic landscape, with numerous projects, standards, and approaches emerging independently.

In response, new open-source standards and alliances are emerging to bring order to this complexity.
Organizations such as the Linux Foundation’s LF Al & Data, the Open Neural Network Exchange
(ONNX), and the Al Open Network are working to establish common frameworks and guidelines that
promote interoperability, transparency, and collaboration. These efforts are crucial in ensuring that
open-source Alremains a cohesive and accessible resource, particularly for data-poor contexts where
proprietary solutions may be out of reach. These initiatives are helping to unlock the full potential of
Al across diverse applications and settings by fostering a more structured and unified open-source
ecosystem. Moreover, to strengthen local Al ecosystems and enable skilled professionals to develop
localized Al solutions, access to open Al training data and open-source models is paramount, in
addition to reliable infrastructure (Gimpel, 2024).
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6.3.2. Right to Development

Thedigitaldivide is also intertwined with the gender divide and thusitimpairs the right to development
of vulnerable populations and, at a broader scale, the ability of SIDS and LDCs to fully engage in
climate action and sustainable development. As Al technologies become increasingly relevant for
climate mitigation and adaptation, disparities in digital infrastructure and literacy risk excluding
developing nations from the benefits of Al-driven climate solutions.

Bentley et al. (2024) explored the implications of the digital divide on how people interact with Al
technologies. The authors highlight that unequal access to digital technologies and disparities in
digital literacy can deepen societal inequities and limit the ability of communities to engage with Al-
powered climate adaptation measures. They introduced the concept of ‘digital confidence,” which
encompasses awareness, familiarity, and competence in using digital technologies, and surveyed
303 individuals to assess how these factors influence attitudes towards Al. The study found that
digital confidence is significantly affected by demographic factors such as gender, age, income,
and access to technology. Women, older individuals, people with lower incomes, and those with
less access to digital tools reported lower levels of digital confidence. This lack of digital confidence
could hinder participation in Al-based climate resilience initiatives, such as Al-powered early warning
systems, precision agriculture, and smart water management solutions.

Lutz (2019) addressed inequalities in access to digital technologies, extending this discussion to
emerging technologies like loT and Al-powered systems. The author highlights disparities in digital
skills and technology usage, linking these to new work forms such as the gig economy and the sharing
economy. In the context of climate action, unequal digital access can also limit participation in global
carbon markets, Al-driven disaster risk reduction, and climate-smart supply chain management.
Ensuring digital inclusivity is essential to empower developing nations to harness Al for climate
adaptation, resilience-building, and sustainable economic transitions.

This is not just about improving technical skills or increasing access to technology, but also about
gaining control over data and Al governance. This can help prevent scenarios where data from these
countries are used to feed algorithms that primarily benefit companies and economies elsewhere.
Moreover, developing local Al solutions can stimulate local economies, spur innovation, and provide
more relevant technological solutions that address local needs effectively. It is important that these
efforts go beyondjust setting up infrastructure. Comprehensive strategies should include developing
competencies to allow individuals to engage with and benefit from Al technologies fully.

Moreover, public investment in Al infrastructure aimed at public interest projects can increase
accessibility for communities with lower incomes. Subsidies, public-private partnerships, and
other innovative financial mechanisms can reduce the cost of Al technologies, making them more
accessible and promoting equitable technological advancements. These multifaceted approaches
are important for closing the digital divide and enhancing the capacity of communities worldwide to
leverage Al for sustainable development. Capacity-building programmes are key to ensuring that
local populations have the knowledge to develop and maintain Al solutions. Training programmes
for local engineers, data scientists, and policymakers can help build a sustainable ecosystem for Al
development in developing countries.

Critical perspectives on this issue suggest examining the intricate layers of how technology is not just
a tool for progress but also a potential instrument of power that can reinforce or challenge existing
global inequalities. The dialogue around digital sovereignty and local Al ecosystem development is
therefore deeply tied to broader discussions about economic independence, cultural integrity, and
equitable growth within the global technological landscape and thus with the Right to Development.
In that context, Al governance must ensure that SIDS and LDCs have the agency to implement Al-
driven climate strategies that align with their specific needs and development pathways.
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6.4. Biases

In the context of Al applications for climate action, it is important to acknowledge the impacts of
spatial and temporal biases in the training data on algorithmic bias. Spatial biases arise when the
geographic distribution of the training data is uneven, potentially leading to Al models that perform
well in certain regions but poorly in others. Temporal biases occur when the training data does not
adequately capture the variability over time, which can result in models that are less robust to future
changes oranomalies. These biases can significantly affect the reliability and fairness of Al predictions
and interventions, necessitating careful consideration during the model development and training
phases. For instance, training an Al model to predict urban heat requires careful selection of spatial
resolution, as a low resolution might average out extreme values in smaller neighbourhoods and
overlook critical hotspots, while a higher resolution can reveal these peaks but potentially introduce
noise (McGovern et al., 2022a).

McGovern et al. (2022b) emphasize the critical need for ethical and responsible implementation. It
dispels the misconception that the environmental sciences are immune to Al’s unintended societal
impacts, such as those seen in criminal justice and finance systems. The study presents examples
showing how Al can introduce similar biases and negative consequences in environmental contexts,
despite the perceived objectivity of data and algorithms. By stimulating discussion and research,
the authors aim to prevent the environmental science community from repeating mistakes made in
other fields. They advocate for precautionary measures to ensure Al is used responsibly, harnessing
its potential to address climate and environmental injustices. While focusing on weather and climate,
the study’s conclusions apply broadly across all areas of environmental science.

Furthermore, bias can exacerbate inequalities if Al systems are not meticulously designed and
managed, leading to unfair outcomes that disproportionately affect marginalized groups. For
example, Al-powered climate prediction models may under-represent regions with sparse data,
leading to inadequate disaster preparedness measures in vulnerable communities. Similarly, biases
in Al-driven carbon credit markets could disproportionately benefit wealthier nations, reinforcing
existing disparities in global climate finance. Therefore, ensuring accessible Al technologies involves
creating tools and systems that are user-friendly and widely available and ideally developed in a co-
creative manner with diverse communities (The Collective Intelligence Project, 2024).

Promoting climate-specific digital and algorithmic literacy is essential to empower users to engage
with Al-driven climate applications critically and effectively. For instance, if Al-based early warning
systems rely on biased training data, they may fail to provide timely alerts to remote or marginalized
populations, leaving them disproportionately exposed to climate hazards. Unbiased Al outcomes
are necessary to ensure fairness and equity in climate adaptation and mitigation efforts, which
requires rigorous testing and validation processes to detect and mitigate biases. Moreover, Al
system providers must ensure that development is conducted with a human rights-based approach,
emphasizing the protection of human rights. In the climate domain, this means ensuring that Al-
driven resource allocation, emissions tracking, and sustainability assessments are equitably applied
across regions and populations.
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Effective regulation is needed to establish standards and guidelines that promote equitable access
and use of Al technologies in climate action and address market concentration. The UN and EU
have launched significant initiatives to regulate Al development, with growing attention to ensuring
its responsible use in climate governance. Addressing these factors allows for progress towards a
more equitable Al landscape where Al-driven climate action benefits all sectors and contributes to
sustainable and inclusive development.

In addition, biases in Al-powered climate modelling, emissions tracking, and environmental
monitoring can lead to skewed results, undermining the effectiveness of Al solutions. Incomplete or
biased data can/will perpetuate existing inequalities and result in climate policies that do not address
the needs of under-represented populations. For example, if Al-based deforestation monitoring is
trained primarily on satellite imagery from temperate regions, it may fail to accurately detect land
degradation in tropical forests, leaving critical ecosystems unprotected. Similarly, if Al-driven energy
transition models prioritize developed nations’ infrastructure, they may overlook viable renewable
energy solutions for LDCs and SIDS.

Governments and organizations need to implement stringent data protection laws, establish clear
guidelines for data handling, and ensure that there are enforcement mechanisms in place to prevent
bias in Al-driven climate assessments. Moreover, transparency in data collection processes and the
involvement of local communities in Al-based environmental monitoring can help build trust and
ensure that the data collected is representative and useful for climate action and available to benefit
local communities.

Risks related to the deployment of Al systems encompass equity and inclusion issues related to
environmental injustice and social inequality. These challenges stem from systemic discrimination
and deep-rooted prejudices against specific groups, communities, or regions. Misuse of Al systems
can perpetuate and even exacerbate existing inequalities if they reinforce these entrenched biases.
Previous Al models have demonstrated biased predictions when applied to racial minorities, leading
to harmful and potentially serious consequences (Columbia University, 2024). Therefore, it is crucial
to design and implement Al with a conscious effort to address and rectify these long-standing issues
to ensure fair and equitable outcomes for all. As concluded by UNESCO (2020), “Algorithmic failures
are ultimately human failures that reflect the priorities, values, and limitations of those who hold
the power to shape technology. We must work to redistribute power in the design, development,
deployment, and governance of Al if we hope to realize the potential of this powerful advancement
and address its perils.” Ensuring Al fairness in climate decision-making requires a conscious effort to
address systemic biases and empower historically disadvantaged communities to participate in Al-
driven climate governance.

The broaderissue of representation biasin Al extends beyond gender bias andis a significant concern,
particularly in developing countries. This bias arises from the data scarcity and digital divide prevalent
in these regions, which can lead to Al systems trained on existing datasets that fail to accurately
represent local realities. The lack of comprehensive and diverse data results in Al models that may
not be fit for purpose, as they often lack the necessary contextual understanding to address specific
challenges faced by communities in developing countries.

To overcome this limitation, it is essential that efforts to build Al solutions for these regions occur in
tandem with targeted data collection initiatives. These initiatives should aim to equip Al tools with
the appropriate context, ensuring that they can effectively solve local problems and contribute to
meaningful development. Al systems can be better tailored to address the nuanced challenges
these areas face by incorporating diverse, and disaggregated datasets that reflect the unique socio-
economic, cultural, and environmental conditions of developing countries, ultimately leading to more
equitable and impactful outcomes.
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Especially, gender bias in Al poses a significant challenge to its effective use for climate action in
both developed and developing countries. Unless carefully designed and implemented, Al systems
can perpetuate and even exacerbate existing gender inequalities, especially as economic systems
often obscure the crucial contributions of women in ensuring food security, healthcare, and climate
resilience, due to the informal nature of their work in these sectors. This bias can manifest in various
ways, such as under-representation of women in data used for training Al models or gender-
insensitive design of Al applications. Addressing gender bias requires a conscious and deliberate
effort and investments to include diverse contributions and perspectives in the development and
deployment of Al technologies. Ensuring that Al solutions for climate action are gender-responsive
can help promote more inclusive and equitable outcomes.

The UNFCCCreport “Progress, Good Practices, and Lessons Learnedin Prioritizingand Incorporating
Gender-responsive Adaptation Action” (2023) offers an in-depth analysis of how gender-responsive
strategies are being integrated into climate change adaptation efforts worldwide. It underscores the
necessity of involving both women and men in the formulation and execution of these strategies to
address gender-specific climate impacts, i.e., the importance of equitable gender representation in
decision-making processes, demonstrating effective practices and lessons from various countries.
It identifies existing gaps and challenges, such as the need for more gender-disaggregated data
and increased funding for gender-responsive projects and provides recommendations to enhance
resilience and promote gender equality in adaptation initiatives.

As Al-driven climate solutions become more widespread, integrating gender considerations into Al-
based adaptation planning is critical to ensuring inclusive and effective climate action. Al models
used for early warning systems, resource allocation, and climate-smart agriculture must account
for gender-specific vulnerabilities and contributions to avoid reinforcing existing inequalities. For
example, Al-powered disaster response systems should ensure that data collection processes
incorporate gender-disaggregated information to prioritize the needs of women, who are often
disproportionately affected by climate-induced displacement and resource scarcity.

Table 9 summarizes the approaches and outcomes of gender-responsive climate adaptation
strategies from several LDCs and SIDS from the UNFCCC report.
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Table 9: Gender-responsive climate adaptation strategies in LDCs and SIDS

Country

Burkina Faso

Gender-responsive
Actions

Outlined women's
vulnerabilities,
promoted precipitation
harvesting techniques,
and addressed water
scarcity.

Challenges Addressed

Women are more
dependent on affected
resources, less access to
agricultural inputs and
land, longer distances
for water.

Outcomes/Benefits

Enhanced resilience
of women farmers,
improved water
management, and
reduced vulnerability
to extreme weather
events.

Fiji Ensured women'’s Limited recognition of Increased women'’s
participation in decision- | women’s contributions involvement in
making and access to in adaptation activities. adaptation activities,
economic resources empowered women
and financial services, through economic
recognized women's opportunities, and
social roles. promoted sustainable

resource use.

Saint Lucia Committed to gender Lack of gender- Better understanding of
equality, collected disaggregated data on gender-differentiated
gender-disaggregated adaptation needs. impacts, informed
data, conducted gender decision-making, and
assessments, and inclusive adaptation
developed gender- strategies.
responsive strategies.

Guatemala Developed a gender Ensuring women'’s Empowered women

strategy for NDC,
implemented
ecosystem- and
community-based
adaptation actions with
women’s participation.

participation and
reducing vulnerabilities.

through participation
in restoration and
conservation projects,
enhanced resilience
of ecosystems and
communities.

Guinea-Bissau

Developed gender
action plans, used
gender-sensitive
budgeting, and trained
women in food safety
and entrepreneurship.

Allocating resources
for gender equality
and women's
empowerment.

Strengthened resilience
of vulnerable coastal
areas, improved climate
information systems,
and enhanced women'’s
economic opportunities
and food safety
knowledge.
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These case studies highlight how LDCs and SIDS are tackling the gender-specificimpacts of climate
change to promote gender equality and women’'s empowerment through tailored adaptation
strategies. To maximize the effectiveness of these approaches, Al can play a role in improving
gender-responsive adaptation strategies by ensuring that climate risk assessments, financial
assistance programmes, and resilience-building initiatives are informed by equitable and unbiased
data. Al-driven climate models must be trained to recognize gender-specific vulnerabilities to
prevent reinforcing biases in climate planning and policy implementation.

The report calls for ongoing support to ensure that gender-responsive measures are integrated into
national adaptation plans. The analysis of gender bias in the use of Al for climate action in developing
countries relates to the thematic areas addressed in Section 4, as follows:

Early Warnings and Disaster Risk Reduction: Al can reinforce male-dominated perspectives,
overlooking women'’s specific vulnerabilities in disaster response and risk reduction (Varona et al.,
2021). Social and economic inequalities, such as restricted mobility and limited access to information,
further heighten these risks.

Resource Management: Al-driven systems for resources management in water, agriculture,
fisheries, and forests often neglect women'’s critical roles, leading to inefficient and unjust resource
allocation and conservation efforts.

Energy Management: Al in energy systems can deepen gender inequalities by ignoring women's
reliance on traditional biomass, and their role in driving the energy transition in life-sustaining sectors
(food transformation), while men have greater access to modern energy sources, equipment,
and training.

Transport Management: Al-driven transport systems that prioritize efficiency over safety may fail
to consider women's specific schedules and security needs, limiting their safe mobility.

Education and Community Engagement: Al tools that disregard gender disparities in technology
access can widen the digital divide, restricting opportunities for women.

Variousinternational organizations have made recommendations forintegrating gender perspectives
into public policies and educational programmes to address gender biases in Al. Studies have begun
to explore the intersection of Al and gender equality under the UN SDGs; research has identified
societal roots and technical factors contributing to gender bias in Al.

The Paris Agreement acknowledges that when taking action to address climate change, Parties
should respect, promote and consider gender equality and empowerment of women. Gender
considerations are increasingly being prioritized in climate funds and funding mechanisms (Schalatek,
2022). In addition to gaining access to climate finance and capacity-building, developing countries
- primarily LDCs and SIDS - have advocated for enhanced technology transfer to aid their climate
change adaptation efforts and ensure gender inclusivity.
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6.5. The Role of Alin Accelerating Fossil Fuel Extraction
and Exploitation, Spreading Climate Misinformation, and
Promoting Consumerism

While Al holds significant promise for driving positive change, it also carries risks when applied in
ways that conflict with environmental sustainability objectives. For instance, Al has been widely
deployed to enhance fossil fuel exploration and extraction, increasing efficiency and profitability in
an industry responsible for nearly 90% of global CO: emissions (IEA, 2023). This widespread use
of Al in fossil fuel operations risks extending the economic viability of carbon-intensive industries,
directly contradicting global efforts to transition to renewable energy. Moreover, Al-driven targeted
advertising fosters consumerism and unsustainable behaviours, driving demand for products
and services that contribute to environmental degradation. These Al-enabled systems influence
consumption patterns on a massive scale, shaping global markets and intensifying resource depletion.

Additionally, Al systems are increasingly being exploited to generate and disseminate climate
misinformation at unprecedented scales, undermining evidence-based policy discussions. For
example, Al-powered disinformation campaigns have been found to manipulate public perception
by downplaying climate risks, delaying regulatory action, and fostering distrust in climate science
(Galaz et al., 2023a). The rapid evolution of Al-generated content, combined with opaque social
media algorithms, creates a landscape where false climate narratives spread faster than fact-
based discourse.

Eremin and Selenginsky (2023) focused on the application of Al methods in oil and gas
production, illustrating how Al technologies have become critical in optimizing processes from
planning and complication prevention to drilling and production capacity enhancements. Their
study emphasizes the use of Al models in predicting reservoir properties, such as permeability
and porosity, using log and seismic data. These accurate predictions allow engineers to better
manage hydrocarbon recovery. Additionally, Al systems, trained on extensive datasets from real
experiments, simulations, and field logs, can predict potential complications and emergencies.
Overall, Al contributes to improving efficiency and boosting hydrocarbon recovery in the oil
and gas industry. In some cases, Al systems have increased production levels by up to 5%, with
projections indicating that Al could generate up to $425 billion in value for the sector by 2025
(ICLR, 2024).

Galaz etal. (2023) and Treen et al. (2020) describe the role of Al-driven misinformation in shaping
public opinion, emphasizing the need for regulatory measures and interdisciplinary strategies
to counteract its impact. Chu-Ke and Dong (2024) highlight the dangers of Al-generated
disinformation, calling for strengthened ethical Al development, regulatory oversight, and public
Al literacy initiatives.
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Treen et al. (2020) further demonstrate how Al-driven misinformation exacerbates scepticism
and polarization, particularly on social media platforms, which amplify confirmation bias and echo
chambers. All three studies stress the urgency of addressing misinformation through a multi-
pronged approach, integrating policy, education, and technology-based solutions. While the
perspectives differ, they all stress that the evolution of Al and digital platforms poses significant
challenges that must be addressed through collaboration, governance, and cross-disciplinary
research. The integration of ethical Al practices, improved literacy, and interdisciplinary efforts will
be crucial in mitigating the adverse impacts of misinformation and promoting more accurate and
reliable climate communication.

However, Al can be also leveraged to address the growing threat of climate change misinformation
on social media, which is outpacing the capacity of human fact-checkers. For example, Rojas et al.
(2024) developed a two-step hierarchical machine learning model to detect and classify climate
misinformation, improving the accuracy and efficiency of content moderation. The study introduces
the Augmented Computer Assisted Recognition of Denialand Scepticism (CARDS) model, specifically
designed to categorize climate-related claims on Twitter (officially known as X). By analysing five
million climate-themed tweets over a six-month period in 2022, the study found that more than half
of contrarian climate claims involved attacks on climate actors. These spikes in misinformation were
driven by four main stimuli: political events, natural events, contrarian influencers, and convinced
influencers. The findings emphasize the potential of automated tools to help detect and mitigate
the spread of climate misinformation in real time, providing valuable insights for combating online
disinformation. This model offers a new direction for leveraging ML to tackle climate change denial
and scepticism, which has significant implications for both policy and public discourse.

Moreover, micro-targeting ML techniques can be leveraged for digital nudging in order to foster
more sustainable habits and behavioural changes shift, (Bartmann, 2022) as presentedin Section 4.8.
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7. Policy Options for the Use
of Al as a Technological Tool
for Advancing and Scaling Up
Transformative Climate Solutions
for Mitigation and Adaptation
Action in Developing Countries

7.1. Deploy Al tools for Climate Change Mitigation and
Adaptation Strategies

Policymakers could consider the promotion and use of Al tools and systems on proven cases of Al for
climate action included in this paper such as on early warning systems for disaster risk reduction (UN
Early Warnings for All Initiative), Al-driven crop monitoring to enhance food security (Early Warnings
System for Crop Phenotyping and Food and Nutrition Security in Kenya), and Al-based environmental
monitoring for ecosystem protection (AMAP Mangrove Mapping in the Solomon Islands).

7.2. Develop Inclusive and Sustainable Artificial
Intelligence Policies

Energy efficiency: Formulate policies that promote the development and deployment of energy-
efficient Al technologies. Encourage innovations in green computing to reduce the environmental
footprint of Al systems. This includes incentivizing research into energy-saving algorithms and
hardware, supporting the transition to renewable energy sources for data centres and communication
networks, and setting standards for energy efficiency in Al applications. Implement policies
that require a life cycle assessment of Al systems to evaluate their environmental impact from
development to deployment. Encourage the development of cooling technologies that minimize
water usage.

Data security and Sovereignty: Implement robust data protection laws that ensure the security
of data used in Al applications. Enhance cybersecurity measures to protect sensitive data and
implement strict protocols for data access and management. This includes establishing guidelines
for data collection, storage, and sharing, ensuring that data governance frameworks are in place to
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address concerns about unauthorized access, data breaches, and misuse of information. Policies
should also mandate regular security audits and compliance checks, promote the use of encryption
technologies, and foster a culture of transparency and accountability in data handling practices.
Moreover, enhancing public awareness about data security issues is key to building trustin Al systems.
In addition, data governance frameworks should respect and uphold data sovereignty principles,
particularly the rights of indigenous peoples and local communities to retain ownership, control,
and access to the data that relates to them. This includes ensuring that data used in Al modelling is
collected, processed, and shared in a legitimate way.

Digital divide: Invest in digital infrastructure to improve access to Al technologies in developing
countries, with a focus on LDCs and SIDS. This includes expanding internet connectivity, enhancing
computing capabilities, ensuring a reliable power supply, and making essential Al development
resources available as digital public goods. Develop strategies to bridge the digital divide by
ensuring equitable access to electricity, ICT infrastructure, datasets and models, and Al skills. This
involves investing in Al research relevant to developing countries with a focus on LDCs and SIDS,
public infrastructure for Al development, digital literacy programmes, particularly in remote and
underserved areas, and providing training on Al technologies, and incorporate bias detection and
mitigation techniques in Al model development. Policies should also focus on making Al tools and
resources openly accessible and affordable to all communities, thereby fostering inclusive growth,
innovation, and quality. Develop ethical frameworks that govern the use of Al, ensuring that Al
applications are free from biases, thus promoting fairness and equity in Al deployment and enabling
benefit-sharing with local communities.

7.3. Integrate Indigenous Knowledge, Gender-responsive
Approaches, and Youth Stakeholder Innovation

Incorporate Indigenous Knowledge: Indigenous knowledge systems provide localized environmental
insights that have been refined over centuries and can enhance the effectiveness of Al applications
in specific climate contexts. However, their integration should be targeted and relevant, ensuring
that Al solutions respect, validate, and complement traditional knowledge rather than replace
or misrepresent it. To ensure meaningful integration of indigenous knowledge in Al systems,
policies should:

- Engage Indigenous Communities in Al Co-design — Ensure participatory approaches in
Al model development where local knowledge is applicable, avoiding nominal inclusion.

+ Develop Ethical Practices - Establish clear data-sharing agreements that respect indigenous
values over environmental data and avoid misappropriation of traditional knowledge.

+ Incorporate Cultural Context in Al-Driven Climate Communication — Ensure Al-powered
climate advisory platforms use culturally appropriate language, narratives, and risk perception
frameworks for effective decision-making in local communities.

Gender-responsive Al policies: Ensure that Al policies and programmes are inclusive and address
gender and demographic disparities. Invest in the generation of gender disaggregated data to
document and recognize the crucial contributions of women in climate action, such as the care
economy, climate resilient agriculture and food security, water management, and energy transition.
Promote the active participation of women in Al-related fields through targeted education, training
programmes, and career opportunities.
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Include Youth in Al Policy Development and Climate Solution Innovation: Engage youth
stakeholders to democratize the development and implementation of Al policies and programmes
that are age-responsive and integrate the needs of children and youth. Promote stronger interlinks
among youth leaders in digital technologies and the innovation ecosystem to support youth-led
initiatives in Al policy and climate action. Such efforts should recognize and harness the unique
experiences, perspectives, and skills of children and youth.

7.4. Promote Socially Inclusive Artificial
Intelligence Development

Inclusive Al development: Ensure that Al development and deployment processes and governance
are inclusive, considering the needs and perspectives of marginalized communities, including
women and indigenous groups, and low-income populations, as well as the youth. Develop policies
that promote equitable access to Al technologies and their governance, focusing on affordability,
infrastructure development in underserved areas, and the reduction of digital illiteracy barriers.
This includes fostering capacity-building initiatives to enable meaningful participation in Al-driven
climate solutions.

Community Engagement in Al-Driven Climate Solutions: Community engagement is most
relevant in Al applications where local knowledge, risk perception, and contextual adaptation are
critical to implementation. This includes:

- Early Warning and Disaster Preparedness — Al-based early warning systems for floods,
cyclones, and droughts must incorporate community-level participation to ensure that alerts
reach vulnerable populations through accessible communication channels, such as radio, mobile
alerts in local languages, or community leaders as trusted messengers.

+  Climate-resilient Agriculture — Al applications that provide precision agriculture
recommendations should integrate local farming knowledge to ensure Al-driven advisories align
with traditional farming techniques rather than imposing one-size-fits-all solutions. Engaging
smallholder farmers in training and feedback loops ensures the usability of Al tools.

+  Sustainable Land and Resource Management — Al applications in deforestation monitoring and
biodiversity conservation should involve local stakeholders in validating Al-generated insights
and ensuring that Al-driven policy decisions do not conflict with customary land rights or
sustainable resource use practices.

- Energy Access and Electrification - When Al models are used to optimize renewable energy
distribution in remote or off-grid areas, engagement with local communities ensures that
deployment strategies prioritize energy needs and do not exacerbate existing inequalities in
energy access.

*Recognizing Care Work in Climate Resilience — Al applications should be designed to recognize

and integrate the vital role of unpaid care work — predominantly carried out by women in all their
diversity - in sustaining the climate resilience of local communities.
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7.5. Foster International Cooperation, Capacity-building, and
Knowledge Sharing

Establish collaborative frameworks: Strengthen international partnerships and cooperative
frameworks to facilitate knowledge exchange, technology transfer, and capacity-building, in line with
the provisions of the UNFCCC and the Paris Agreement. Partnerships should involve international
organizations, multilateral climate finance mechanisms, and private sector stakeholders, fostering a
global, inclusive effort to tackle climate change.

Capacity-building programmes: Implement training programmes and workshops to build local
expertise in Al and climate science. This can be achieved through partnerships with educational
institutions, international organizations, and the private sector to provide training and education.
Targeting government officials, technical experts, and community leaders will enhance their
understanding and application of Al in climate action, empowering local communities to leverage Al
technologies effectively.

Open data platforms and digital public goods: Promote the use of open data platforms and
registering datasets and models to enable countries to share climate-related data and models. This
facilitates collective learning and innovation, allowing for transparent exchange and access to valuable
climate information, which can enhance the accuracy and applicability of climate predictions. Open
data platforms standardize data collection methods, ensure consistency, and foster regional and
global cooperation, ultimately accelerating the development and deployment of effective climate
action strategies tailored to specific needs. The Digital Public Goods (DPG) registry provides open-
source software, open data, open Al models, open standards, and content that adhere to privacy
and other applicable laws and best practices, do no harm, and help attain SDGs. A DPG registry
would typically catalogue such resources to promote access, facilitate sharing, and encourage the
development and use of these tools in various sectors, including education and climate action. This
kind of registry aims to support global development by making high-quality digital solutions widely
accessible and promoting international cooperation in the digital space, particularly in supporting
under-resourced areas or communities. By leveraging DPG in the form of open data and open-
source Al models, countries can improve the accuracy and applicability of climate predictions and
enhance their overall resilience to climate impacts.

7.6. Establish Robust Monitoring and Evaluation Frameworks

Impact assessment: Develop monitoring and evaluation frameworks to assess the impact and
effectiveness of Al applications in climate action. This includes setting performance metrics and
regularly reviewing progress to ensure Al solutions are effective and aligned with climate goals. Use
these assessments to refine policies and strategies continuously.

Transparency and accountability: Ensure transparency in Al initiatives by making data,
methodologies, and findings publicly accessible to stakeholders. This openness fosters trust and
enables independent verification of results, ensuring that Al applications in climate action are
transparent and reliable. Establish mechanisms to track the progress of Al projects, identify areas
for improvement, and address any issues that arise. Regular reporting and feedback loops are
important to maintain accountability and ensure that Al-driven climate solutions meet their intended
goals effectively.
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7.7. Invest in and Foster Artificial Intelligence Research,
Development, and Innovation

Localized Al solutions: Prioritize funding for Al research and development projects that are tailored
to local contexts and address specific climate challenges faced by developing countries, with a focus
on LDCs and SIDS. Encourage innovation in Al research and applications that can directly benefit
these regions.

Interdisciplinary and applied research: Promote interdisciplinary and applied research at the
convergence of computer science and climate science. Establish pathways for enhancing the
technical maturity of Al applications in climate change mitigation and adaptation through targeted
research, development, and demonstration initiatives.

Support for start-ups and innovation hubs: Create supportive environments for start-ups and
innovation hubs focusing on Al for climate action. Provide grants, tax incentives, and incubation
support to foster innovation in the private sector.
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8. Conclusions and
Recommendations

8.1. Conclusions

The use of Al to combat climate change presents opportunities, challenges, and risks for developing
countries. Based on the findings in the preceding chapters, this paper draws conclusions and offers
recommendations. It recognizes that the presented findings are likely to change in the near future
due to the rapid evolution of Al usage.

The Role of Al in Advancing Climate Solutions: Al and ML can support efforts to adapt to and
mitigate the effects of climate change, including by improving disaster risk preparedness, energy
efficiency, sustainable mobility, resource management and industrial transformation. Unlike
traditional modelling techniques, Al systems can rapidly analyse vast, multi-source datasets
in real time, enhancing forecasting accuracy and enabling more adaptive decision-making in
uncertain situations.

For example, applying Al to agriculture and fisheries can optimize crop yields, manage fish stocks,
combat illegal fishing, and safeguard marine ecosystems through predictive analytics, image
recognition, and automated monitoring tools. Similarly, integrating Al into transport networks, and
industrial operations can accelerate the transition to low-carbon economies by optimizing logistics,
reducing emissions through smart control systems, and enabling predictive maintenance.

Predictive and Adaptive Capabilities for Climate Resilience: Al-powered forecasting, integrated
with real-time data from Internet of Things (IoT) sensors, can be leveraged to enhance early warning
systems and strengthen resource management. These predictive capabilities are particularly
relevant in regions that are vulnerable to climate change, such as SIDS and LDCs, where extreme
weather events pose significant risks. Leveraging Al-driven models enables governments and local
communities to enhance their capacity to adapt to disasters and safeguard infrastructure, livelihoods,
and ecosystems.

Optimizing Resource Use Through Al: Al-driven solutions in agriculture, fisheries, energy grids,
transportation, and industrial processes can reduce emissions and bolster sustainability. However,
maintaining and scaling Al-driven systems in developing contexts requires enhanced capacity-
building efforts and investment in digital infrastructure to ensure long-term effectiveness.
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Embedding Cultural and Local Context in Al Solutions: Incorporating local contexts into Al
solutions is essential for addressing the unique challenges and opportunities present in different
regions. Socio-economic factors, such as local languages, traditions, access to resources, influence
how communities interact with technology and the effectiveness of different solutions. Geographic
factors, such as climate, infrastructure, and natural resources, also shape the specific needs and
priorities of local populations.

Understanding and integrating these local contexts enables the development of Al systems
that better serve the diverse needs of communities, ensuring that technological advancements
contribute to inclusive low-emission and climate-resilient development.

Enabling Al Deployment: The successful deployment of Al for climate action in developing
countries, in particular SIDS and LDCs, requires an enabling environment that includes:

+ Infrastructure Development: Reliable electricity, broadband connectivity, and access to cloud
computing to support Al deployment.

- Skill Development: Strengthening technical expertise through capacity-building programmes
to ensure the effective customization and maintenance of Al systems.

« Financial Support: Securing investments from bilateral and multilateral sources, including from
the Green Climate Fund (GCF), the Adaptation Fund, the Global Environment Facility (GEF),
the Least Developed Countries Fund (LDCF) and the Special Climate Change Fund (SCCF) to
scale up Al-driven climate technologies.

« Governance and Policy Frameworks: Establishing legal mechanisms that promote the
responsible use of Al, protect data privacy, and encourage open-source Al solutions.

Challenges and Risks in Al-driven Climate Action: Despite its potential, the adoption of Al for
climate action faces significant barriers, including:

« High Costs and Limited Resources: Many developing countries, particularly SIDS and LDCs,
lack the capital to invest in Al infrastructure and maintain advanced digital technologies.

- Data Scarcity and Quality Issues: Al models require large, high-quality, gender disaggregated
datasets to function effectively, yet many regions lack sufficient localized data.

- Digital Divide and Exclusion Risks: Connectivity gaps and low digital literacy levels may
marginalize vulnerable populations, limiting equitable access to Al solutions.

+ Security and Privacy Concerns: Inadequate data protection frameworks could lead to data
misuse, unauthorized access, or cyber vulnerabilities.

+ Bias and Equity Challenges: Al models trained on data from high-income countries, and male-
dominated economic sectors may overlook local contexts and existing inequalities, potentially
reinforcing inequalities in climate response strategies.

- Disinformation and Manipulation Risks: The use of Al, particularly generative models and
algorithmic targeting, can amplify climate-related disinformation, mislead public opinion, and
undermine trust in climate science, particularly within information ecosystems that are either
poorly regulated or highly vulnerable.
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Opportunities for Inclusive and Equitable Al Adoption

+  Open-source and Shared Platforms: Encouraging global collaboration while respecting local
data sovereignty to ensure Al applications are accessible and tailored to regional needs.

- Hybrid Approaches: Combining rule-based systems with machine learning techniques to
enable effective Al deployment in environments with limited data.

- Targeted Funding and Partnerships: Leveraging climate finance instruments and forging
partnerships with universities, NGOs, and technology firms to develop Al solutions adapted to
specific regional challenges.

- Inclusive Al Design: Engaging under-represented groups, including women, youth, and
indigenous communities in Al development to ensure that diverse, local perspectives shape
context-specific climate solutions.

8.2. Recommendations

+ Promote the use of open-source Al applications in climate change mitigation and adaptation
strategies in developing countries, ensuring they are deployed and are the most suitable tool
for the task.

« Encourage the use of Al for climate action by promoting supportive policies, local training,
and resources to empower stakeholders to use Al to reduce GHG emissions and build
climate-resilience.

- Integrate Al technologies into national and regional climate strategies where they can enhance
areas such as early warning systems, optimization of resource allocation, and data-driven
decision-making in climate adaptation and mitigation efforts.

«  Strengthen global partnerships and knowledge sharing by fostering international cooperation
and developing capacity-building programmes to enhance the skills and capabilities of local
stakeholders, promoting knowledge-sharing and collaboration to maximize Al’s potential in
climate strategies.

- Develop inclusive and sustainable policies and establish governance approaches, enabling
data-driven decision-making and access to climate regulatory frameworks and state-of-
the-art research.

+ Reduce the energy consumption and carbon footprint of Al by implementing energy-efficient
algorithms, promoting the use of Small Language Models (SLMs), and adopting renewable
energy sources for Al infrastructure.

- Strengthen data security and ethical governance by developing robust data governance
frameworks to ensure privacy, security, and ethical use of data, protecting against unauthorized
access and breaches.

< Address gender bias by applying inclusive design practices, generating and using diverse

datasets, and establishing gender-responsive policies, particularly in climate-related
applications.
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Bridge the digital divide through equitable access by investing in infrastructure development
and capacity-building initiatives in developing countries to promote equitable access to Al
technology and resources.

Invest in Al research, development, and innovation tailored to local contexts and priorities by:

- Collaborating with local communities, governments, and organizations to identify specific
climate challenges and priorities;

— Supporting research initiatives that create Al solutions aligned with the unique
environmental, social, and economic conditions of different regions;

- Allocating funding for local Al innovation hubs to foster relevant and sustainable home-
grown solutions;

- Expanding access to Al resources for climate solutions by facilitating the availability of Al
tools, data, and technical expertise to support effective, locally relevant Al-driven climate
responses at local and national levels in regions facing significant climate challenges.

Enable Al deployment for climate action in developing countries with a focus on SIDS and
LDCs by facilitating relevant infrastructure and skills development, financial support and the
establishment of governance and policy frameworks.

Integrate local knowledge into Al-powered solutions:

- Engaging local and indigenous communities to incorporate traditional knowledge into
datasets and the development of Al models for local context-specific climate action. This
is particularly relevant in sectors such as land management, disaster preparedness, and
biodiversity conservation, where local insights complement Al-generated predictions.

Ensure gender-responsive approaches in Al development by:

- Investing in gender disaggregated data generation, collection and use to feed Al-powered
climate solutions;

- Involving women and gender experts throughout all phases of the design, development,
and implementation of such solutions;

- Promoting inclusivity by addressing the specific needs, contributions, and lived experiences
of women and girls, particularly in contexts where socio-economic disparities limit access to
climate technologies;

- Thisis especially pertinent in climate adaptation policies, disaster resilience planning, and
Al applications in sectors such as sustainable agriculture and water resource management,
where gender-differentiated vulnerabilities and contributions must be considered.
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- Establish robust monitoring and evaluation frameworks to assess the impact, effectiveness, and
ethical implications of Al applications in achieving climate goals by:

- Developing clear metrics and indicators to evaluate the impact of Al on environmental,
social, and economic outcomes relating to climate goals;

- Implementing regular monitoring processes to adjust Al interventions based on
their effectiveness;

- Establishing ethical review boards to oversee Al projects, ensuring adherence to ethical
guidelines and preventing the exacerbation of inequalities or environmental challenges.
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